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Abstract: A finite-element (FE) model of a structure is a highly idealized engineering model that may or may not truly reflect the
physical structure. The purpose of model updating is to modify the FE model of a structure in order to obtain better agreement between
the numerical and field-measured structure responses. In this paper, a new practical and user-friendly FE model updating method is
presented. The new method utilizes the response surface method for the best experimental design of the parameters to be updated based
on which numerical analysis can be performed in order to obtain explicit relationships between the structural responses and parameters
from the simulation results. The parameters are then be updated using the genetic algorithm (GA) by minimizing an objective function.
A numerical example of a simply supported beam has been used to demonstrate the concept. This method has also been applied to the
model updating of an existing bridge. Results show that this method works well and achieves reasonable physical explanations for the

updated parameters.
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Introduction

Finite-element (FE) models play a very important role in the field
of structural engineering because they can be used to predict the
performance of structures. The FE model of a structure is a highly
idealized engineering model that may or may not truly reflect the
physical structure due to two possible factors, namely, modeling
errors as a result of simplifications and/or assumptions made in
the modeling process and uncertainties in material and geometric
properties as well as boundary conditions (Lee et al. 1987; Ma-
zurek and DeWolf 1990; Salawu and Williams 1995). The pur-
pose of model updating is to modify the FE model of a structure
in order to obtain better agreement between the numerical and
field-measured structural responses.

A comprehensive review of the FE model updating techniques
and their applications to damage detection was reported by Doe-
bling et al. (1998). Generally, two types of methods have been
used for model updating. The noniterative methods directly up-
date the elements of stiffness and mass matrices in one step
(Baruch and Bar-Itzhack 1978; Berman and Nagy 1983). The
iterative parameter-updating methods use the sensitivity matrix of
the updating parameters (Friswell and Mottershead 1995; Link
1999). Eigenvalue and eigenvector (natural frequencies and mode
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shapes) residuals are the most frequently used structural re-
sponses for model updating (Brownjohn and Xia 2000; Zhang et
al. 2001; Xia and Brownjohn 2004). Residual from modal curva-
ture or flexibility (Wahab 2001) and the modal assurance criterion
related function (Teughels et al. 2001) have gained their popular-
ity recently (Brownjohn and Xia 2000; Wu and Li 2004; Jaishi
and Ren 2005). Static responses including deflection and strain
have also been used in the objective function for the reason that
performing a static test is usually much simpler and more eco-
nomical than performing a dynamic test (Hajela and Soeilo 1990;
Sanayei et al. 1997).

Marwala (2004) first introduced the use of response surface
method (RSM) to structural model updating. In his study, the
multilayer perceptron (MLP) is used to approximate the implicit
function between the response and parameters. While the MLP
makes the function less expensive to evaluate and can achieve
accuracy of the same order as those given by the simulated an-
nealing and genetic algorithm (GA) in his study, there are also
problems with the use of the MLP. First, as a type of neural
networks, the accuracy of MLP depends on many factors such as
the number of layers in the model, the number of units in each
layer, the samples, and the number of samples used in the training
process. Also, it is difficult to interpret the relationships between
the response and the parameters since there is no direct relation-
ship between them due to the use of hidden units in the MLP.

In this study, a new, practical, and user-friendly FE model
updating method is presented. The new method uses the RSM for
the best experimental design of the parameters to be updated.
Numerical analyses are then performed in order to obtain the
direct explicit relationships between the structural responses and
parameters from the simulation results. This could not be
achieved by the MLP used in the study of Marwala (2004). The
parameters are updated using the GA by minimizing an objective
function built up using the residuals between the measured struc-
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tural responses and the predicted responses from the expressed
relationships. Natural frequencies from modal analysis and
strains/deflections from static tests are used as responses in the
objective function. A numerical example of a simply supported
beam has been used to demonstrate the procedure. The proposed
method has also been applied to the model updating of an existing
bridge. Results show that this method works well and achieves
reasonable physical explanations for the updated parameters
which could be difficult to interpret when using the MLP pro-
posed in Marwala’s (2004) study.

RSM

In experimental design, reducing the number of samples usually
plays a critical role in reducing the design cost. The factorial
experimental design method is the most commonly used one. For
a full factorial experiment, as the number of factors increases, the
number of factorial points will increase dramatically. A fractional
factorial design is an experimental design consisting of a carefully
chosen subset (fraction) of the experimental runs of a full facto-
rial design. However, for both the full factorial design and the
fractional factorial design, usually only two levels of values are
used for each factor. One limitation of the two-level factorial
designs where the factors are quantitative is that they cannot iden-
tify curvatures in the response surface. Modeling curvature effects
can be very important when the objective of the experiment is to
identify the combination of levels of the quantitative factors that
leads to an optimum response.

The RSM is an approximation optimization method that seeks
the best experimental design using the minimum number of de-
sign samples. It was introduced into the field of experimental
design in the late 1990s. RSM is a much more experimentally
efficient way to determine the relationship between the experi-
mental response and factors at multiple levels. It has been used in
many engineering fields (Das and Zheng 2000; Wang et al. 2005;
Landman et al. 2007). In civil engineering, the RSM has been
used mainly in structural safety and reliability analysis (Bucher
and Bourgund 1990; Das and Zheng 2000; Zheng and Das 2000;
Cheng et al. 2005; Cheng et al. 2007).

The basic idea of the RSM is to use the so-called response
surface function (RSF) to approximate the actual state function,
which is usually implicit and difficult to express. Regression is
usually performed to determine the RSF by the least-squares
method (LSM). The RSF commonly takes the form of polynomi-
als of the variables under consideration and is much easier to deal
with than the actual state function. A quadratic form is often used
for the RSF. Higher-order polynomials are generally not used for
conceptual as well as computational reasons. A typical quadratic
form for a response surface with three variables can be written as

Y= bo + blxl + b2x2 + b3X3 + b12x1x2 + b]3}€1)€3 + b23XZX3 + b“x%
2 2
+byxy + by3xs (1)

where Y=response and x,, x,, and x3=variables.

Central composite designs (CCDs) are the most commonly
used type of RSM designs. By adding a single center point and
four star points to a full two-factor factorial design, a two-factor
CCD can be obtained (Fig. 1). A star point is one in which all
factors but one are set at their midlevels. The distance from a star
point to the center point in code units is typically denoted by a.
For designs that have k (k=3) factors, the CCDs generally con-
sist of three components (Kutner et al. 2004).

Fig. 1. Two-factor CCD

1. 2%/ corner points. Here, f describes the size of the fraction of
the full factorial design used. At the base of any CCD is a
two-level full factorial design or a fractional factorial design.
This component provides information for the estimation of
linear main effects and all two-factor interaction effects. Cor-
ner points have coded coordinates of the form of
(£1,=1,...x1).

2. 2k star points. These factor level combinations permit the
estimition of all quadratic main effects. In addition, when
a={2%=1.0, significance tests for higher-order curvature ef-
fects can be conducted. Star points have coded coordinates
(*£«,0,...,0), (0,*a,...,0), etc., with one coordinate
being *=a and all other coordinates being zeros.

3. ng center points. Here, the case ny=1 is possible and the
coded coordinates of the center point replicates are
0,0,...,0).

Table 1 shows a three-factor CCD with four replicates at the
center point, which will be used later in the simulation study. It
should be noted that the CCD design shown in Table 1 is a stan-
dard design form for a case with three factors. The reason the
center point is repeated four times is because the information at
the center point is more important to the response surface com-
pared with other points and using four replicates in the CCD
design can help achieve a larger (yet reasonable) impact of the
center point on the response surface than the other points. A list of
widely used CCDs is also given in Table 2 for studies involving
two to eight factors.

Table 1. Three-Factor CCD

Factor level settings

Experimental trial number X1 X2 X3

1 (corner point) -1 -1 -1
2 (corner point) 1 -1 -1
3 (corner point) -1 1 -1
4 (corner point) 1 1 -1
5 (corner point) -1 -1
6 (corner point) 1 -1
7 (corner point) -1 1

8 (corner point) 1 1

9 (star point) - 0

10 (star point) 0
11 (star point)

O OO O = = = =

12 (star point)
13 (star point)

|
Q

14 (star point)

15 (center point)
16 (center point)
17 (center point)

= el Nl =Nl =]

S O O O R

18 (center point)
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Table 2. CCDs for Different Number of Factors

Number of Factors

2 3 4 5 6 7 8
Base factorial design 2? 23 24 251 26-1 271 282
Star points 4 6 10 12 14 16
Center point replicate 4 4 4 4 4 4 4
a 1.4142 1.6818 2 2.3784 2.8284 3.3636 4
Total number of trials 12 18 28 30 48 82 84
GA when either a maximum number of generations has been pro-

GAs (Goldberg 1989; Gen and Cheng 1997) are stochastic global
search techniques based on the mechanics of natural selection and
natural genetics. They are widely applied in bioinformatics, phy-
logenetics, computer science, engineering, economics, chemistry,
manufacturing, mathematics, physics, and other fields. GAs are
implemented to an optimization problem as a computer simula-
tion in which a population of abstract representations (usually
called chromosomes) of candidate solutions (usually called indi-
viduals, creatures, or phenotypes) evolves toward better solutions.
The evolution usually starts from a population of randomly gen-
erated individuals and continues in new generations. In each gen-
eration, the fitness of every individual in the population is
evaluated, multiple individuals are stochastically selected from
the current population based on their fitness, and the population is
modified (recombined and possibly randomly mutated) to form a
new population. The new population is then used in the next
iteration of the algorithm. Commonly, the algorithm terminates

[1T2]3]4a]s[ef[7[8]ofto]n[12]13]14]15]
-~ 7
|
I
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Fig. 2. Simply supported concrete beam under study

duced or a satisfactory fitness level has been reached for the
population.

Simulation Study

A simulated, simply supported, concrete beam is taken as an ex-
ample to demonstrate how the proposed RSM and GA can be
used in FE model updating. Fig. 2 shows the concrete beam under
study, which is divided into 15 elements. The beam has a length
of 6 m with a cross section of 0.2 m by 0.2 m. Originally, Young’s
modulus, Poisson’s ratio, and the density of the concrete are as-
sumed to be 20 GPa, 0.3, and 2,400 kg/ m>, respectively.

In the numerical simulation, it is assumed that the beam is
either damaged or has a stiffness change due to any other reasons
at the position of elements 4 and 8. The true values of Young’s
modulus for elements 4 and 8 are 15 and 12 GPa, respectively.
Also, the real density of the concrete is 2,200 kg/m?>. The pro-
posed method is then applied to update this beam model and find
out the true values for the three parameters, i.e., the Young’s
modulus for both elements 4 and 8 and the real density of the
concrete beam.

The CCD shown in Table 1 is used for this three-factor experi-
mental design. Based on the assumption that damages have oc-
curred at elements 4 and 8, the baseline values for the Young’s
modulus of these two elements are taken as 20 GPa. The baseline
value for the density of concrete beam is taken as 2,400 kg/m?.

Table 3. Experimental Design for the Beam Example and Simulated Results for the Responses

X1 X2 X3 Freq. 1 Freq. 2 Freq. 3 Strain
Trial number (GPa) (GPa) (103 kg/m?) (Hz) (Hz) (Hz) (W)
1 10 10 1.920 8.515 14.027 35.879 12.264
2 30 10 1.920 8.901 14.091 39.938 12.261
3 10 30 1.920 9.432 15.174 36.069 11.983
4 30 30 1.920 9.971 15.201 39.997 11.980
5 10 10 2.880 6.952 11.453 29.295 12.264
6 30 10 2.880 7.268 11.505 32.609 12.261
7 10 30 2.330 7.701 12.389 29.450 11.983
8 30 30 2.880 8.141 12.412 32.658 11.980
9 3 20 2.400 7.138 13.204 27.122 12.093
10 37 20 2.400 8.687 13.307 36.209 12.088
11 20 3 2.400 6.190 10918 34.464 12.455
12 20 37 2.400 8.896 13.710 34.706 11.928
13 20 20 1.593 10.462 16.318 42.571 12.089
14 20 20 3.207 7.372 11.500 30.000 12.089
15 20 20 2.400 8.523 13.294 34.680 12.089
16 20 20 2.400 8.523 13.294 34.680 12.089
17 20 20 2.400 8.523 13.294 34.680 12.089
18 20 20 2.400 8.523 13.294 34.680 12.089
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Fig. 3. Static test on the beam

Assuming a unit change for each of the three parameters to be 50,
50, and 20% of the baseline values, respectively, a detailed CCD
for the three parameters can be obtained and is shown in the first
four columns in Table 3. As can be seen from the table, a combi-
nation of properly chosen baseline values and unit changes for the
three parameters can generate a reasonable range that is able to
cover almost all possible values for each parameter.

Numerical modal tests and static tests are then performed on
the beam based on the CCD in Table 3. In the static test, the beam
is subjected to two concentrated loads of 200 N as shown in Fig.
3. The first three natural frequencies from the modal analysis and
the strain at the bottom of the section near the midspan of the
beam from the static test are obtained as responses. Simulated
results for the responses are shown in the last four columns in
Table 3. Based on the parameters and the corresponding re-
sponses, regression is performed to determine the RSFs through
LSM. The obtained second-order RSFs for the four responses can
be expressed as follows:

Y, = 13.6369 + 0.0988x, + 0.1916x, — 5.6282x5 + 0.0003x,x,
—0.0044x,x3 — 0.0095x,x5 — 0.0016x7 — 0.0029x3 + 0.8506x3
()

Y, =23.2057 — 0.0007x; + 0.2193x, — 7.7700x; — 0.0001.x,x,
—0.0004x x5 — 0.0108x,x5 — 0.0001x7 — 0.0032x3 + 1.0667x3
(3)

Table 5. Identified Values for the Three Parameters Using Third-Order
RSFs

Error
Parameters True value Identified value (%)
X1 (GPa) 15.000 14.667 —2.22
X2 (GPa) 12.000 12.065 0.55
X3 (103 kg/m?) 2.200 2.180 -0.91

Y5 =58.3371 +0.7126x; — 0.0008x, — 20.0522:x; — 0.0003x,x,
—0.0382x x5 — 0.0012x,x5 — 0.0099x7 — 0.0004x3 + 2.7835x3
4)

Y, = 12.5276 + 0.000 Lx; — 0.0290x, + 0.0000x3 + 0.0000x,x,
+0.0000x .25 + 0.0000x,5 + 0.0000x% + 0.0000x3 — 0.0000x3
(5)

where Y, Y,, Y3, and Y, denote the four responses, i.e., the first,
second, and third natural frequencies of the beam and the strain at
the bottom of the section near the midspan of the beam from the
static test, respectively; the three variables x,, x,, and x; represent
the three parameters, i.e., Young’s modulus of element 4, the
Young’s modulus of element 8, and the density of the concrete,
respectively. The units for the responses and parameters are the
same as those in Table 3.

An objective function is then built up using the residuals be-
tween the measured (or true) responses and the predicted re-
sponses from the RSFs. In numerical simulation without physical
tests, the results based on the true parameters (15 GPa, 12 GPa,
and 2,200 kg/m?) are used to represent the measured response.

Based on the true results for the first three natural frequencies
and the strain near the midspan of the beam from the static test,
which are 8.3279, 13.3550, 35.2020 Hz, and 12.2210p., respec-
tively, the objective function can be written as follows:

Fopi= (Y, - 8.3279)2 + (Y, — 13.3550)% + (Y5 — 35.2020)2 + (¥, — 12.2210)? (6)

It should be noted that the magnitude of two concentrated
loads in the static test will affect the magnitude of the resultant
strain at the midspan and therefore the weight of the strain infor-
mation in the objective function in Eq. (6) since no weight coef-
ficient was given for the four residual terms in Eq. (6). The reason
why no weight coefficient was assigned for these residual terms
was because in this simulation example, the use of weight coef-
ficients has little effect on the accuracy of the identified param-
eters, as can be seen by the identified parameters later. However,
the best way to eliminate the effect of the load magnitude is to

Table 4. Identified Values for the Three Parameters Using Second-Order
RSFs

Error
Parameters True value Identified value (%)
X1 (GPa) 15.000 15.898 5.99
X2 (GPa) 12.000 13.598 13.31
X3 (10° kg/m?) 2.200 2.188 —0.55

Table 6. Identified Values for the Three Parameters Using Four Different
Objective Functions

True Identified Error

Objective function Parameters value value (%)
Fobj_l X1 (GPa) 15.000 19.871 32.47
X2 (GPa) 12.000 31.994 166.62
X3 (10° kg/m3) 2200  2.657 2078
Fopj_2 X1 (GPa) 15.000 26.011 73.40
X2 (GPa) 12.000 11.938 —0.52
X3 (10° kg/m3) 2200 2224 1.08
Fobj73 X1 (GPa) 15.000 14.596 —=2.70
X2 (GPa) 12000 12.470 3.92
X3 (10° kg/m’) 2200  2.200 0
Foy_4 X1 (GPa) 15000 14667  —2.22
X2 (GPa) 12.000 12.065 0.55
X3 (10° kg/m?) 2.200 2.180 —-0.91
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Fig. 4. Profile of the test bridge

conduct a sensitivity study and use a weight coefficient for each
residual term in the objective function based on their relative
importance, as will be shown later in Eq. (17) for the field study.

By defining the lower and upper bounds for each of the pa-
rameters in the objective function, which are set to be [0 GPa; 0
GPa; 2,000 kg/m?] and [40 GPa; 40 GPa; 2,800 kg/m?®]in this
case, F,; can be optimized using the GA. The identified values
for the three parameters obtained using the GA as well as the
differences from their true values are listed in Table 4.

As can be seen from the table, the errors for the Young’s
modulus of element 4 and the density of the concrete are both
under 6%, which is acceptable. However, the error for Young’s
modulus of element 8 reaches 13%, which is slightly too large. In
order to find out the cause of the relatively large error and further
improve the accuracy of the identified results, third-order RSFs
with the cross-terms ignored are obtained for the four responses
as follows:

Y, =16.8841 +0.2390x, + 0.3894x, — 11.8340x; + 0.0003x,x,
— 0.0044x,x5 — 0.0095x,05 — 0.0098x% — 0.0145x3 + 3.4985x7
+0.0001x] + 0.0002x3 — 0.3678x3 (7)

Y, =28.1998 + 0.0048x, + 0.3971x, — 15.3815x; — 0.0001x,x,
—0.0004x,x5 — 0.0108x,05 — 0.0002x% — 0.0136x3 + 4.3142x%
+0.0000x; + 0.0002x; — 0.4510x3 (8)

Y5 =72.3280 + 1.2100x, + 0.0077x, — 41.3310x3 + 0.0003x,x,
—0.0382x,x3 — 0.0012x,x3 — 0.0391x] — 0.0001x3
+ 11.8620x3 + 0.0005x] + 0.0000x3 — 1.2609x3 9)

Y, = 12.5673 +0.0001x; — 0.0380x, + 0.0000x3 + 0.0000x, x,
+0.0000x,.x3 + 0.0000x,x5 + 0.0000x7 + 0.0009x3 — 0.0000x3
+0.0000x; + 0.0000x; + 0.0000x3 (10)

The same procedures are implemented again to identify the three
variables, and the results are shown in Table 5.

Comparing the results in Tables 4 and 5, it is clear that the
accuracy of identified result for the Young’s modulus of element 8

Fig. 5. Numerical model of the bridge under study

B o I we X b X e (o )
Gl G2 G3 G4 G5 G6 G7

Lane-1

Fig. 6. Static test performed on the bridge

has been greatly improved. For the Young’s modulus of element
4, the accuracy of the identified result is also improved. It can
therefore be concluded that in this case, third-order RSFs can
better represent the real relationships between the responses and
parameters and can therefore produce better identification results.
It is noted that in a real application, the real parameter values are
usually not available; however, as shown later in the field bridge
example, comparison can always be made between the prediction
using the updated model and the measurements. If the difference
is not acceptable, the model can be further improved by adding
more terms and/or more parameters.

In order to find out how many responses would be enough to
identify the three parameters accurately, a series of studies have
been carried out. Four different objective functions have been
built up using one, two, three, or all four responses, respectively,
as shown below

Foy_ 1=1(Y, - 8.3279)? (11)

Fapj_2=7(Y; =8.3279)° + (Y, - 12.2210) (12)

Fopj_3=\(Y, -8.3279)% + (Y, — 13.3550)* + (Y, — 12.2210)?
(13)

Fopy_4= V(Y| = 8.3279)% + (Y, — 13.3550)2 + (Y3 — 35.2020)% + (Y, — 12.2210)? (14)

The four objective functions can be optimized using the GA and
the identified results for the three parameters are shown in Table
6.

As can be seen from the table, using only one or two responses
in the objective function gives poor results, with the largest error
reaching 167% when using one response and 73% when using
two responses. However, using three or four responses can sig-

nificantly reduce the error in the identified results, with all errors
below 4%. It may be concluded that the number of responses
needed in the objective function should be at least no less than the
number of parameters to be identified.

It should be noted in this numerical example that the locations
of damages were assumed to be known and only three parameters
were selected for identification. In reality, if the locations of dam-
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Table 7. Experimental Design of the Five Parameters Using the RSM

Factor level setting

Trial number X1 X2 X3 X4 X5
1 -1 -1 -1 -1 1
2 1 -1 -1 -1 -1
3 -1 1 -1 -1 -1
4 1 1 -1 -1 1
5 -1 -1 1 -1 -1
6 1 -1 1 -1 1
7 -1 1 1 -1 1
8 1 1 1 -1 -1
9 -1 -1 -1 1 -1
10 1 -1 -1 1 1
11 -1 1 -1 1 1
12 1 1 -1 1 -1
13 -1 -1 1 1 1
14 1 -1 1 1 -1
15 -1 1 1 1 -1
16 1 1 1 1 1
17 -2 0 0 0 0
18 2 0 0 0 0
19 0 -2 0 0 0
20 0 2 0 0 0
21 0 0 -2 0 0
22 0 0 2 0 0
23 0 0 0 -2 0
24 0 0 0 2 0
25 0 0 0 0 -2
26 0 0 0 0 2
27 0 0 0 0 0
28 0 0 0 0 0
29 0 0 0 0 0
30 0 0 0 0 0

ages for a large-scale and complex structure are unknown, it can
be a challenging task to identify the parameters using the pro-
posed method. As a matter of fact, because of the complex nature
of parameter identification, it has never been an easy task for
engineers to accurately identify the parameters of a real structure.
Instead, as will be demonstrated later in the field study, assump-
tions are usually made, based on our best knowledge, to simplify
the complicated real situation.

Model Updating of an Existing Bridge

The proposed method has also been applied to the model updating
of an existing bridge. The tested bridge is a two-way bridge lo-
cated over Cypress Bayou in District 61, on LA 408 East, Loui-
siana. This bridge is representative of a large majority of
prestressed concrete slab-on-girder highway bridges in the United
States. It consists of two separated structures, which are identical
and symmetric about the center line of the bridge. Each structure
provides a path for traffic traveling in one direction. Since they
are separated, only one structure has been investigated in this
study.

The bridge structure considered in this study has three straight,
simple spans, each measuring 16.764 m (55 ft) in length with zero
skew angles (Fig. 4). Seven AASHTO type-II prestressed con-

crete girders, spaced 2.13 m (7 ft) from center to center, are used
for the bridge. All girders are supported by rubber bearings at
both ends. Each span has one intermediate diaphragm located at
the midspan and two more located at both ends of the span, all of
which are separated from the bridge deck.

The third span of the bridge was instrumented. A total of seven
measurement stations (S1, S2, S3, S4, S5, S6, and S7 correspond-
ing to girders G1, G2, G3, G4, G5, G6, and G7) were selected,
each with a distance of 0.305 m (1 ft) from the midspan of the
corresponding girder to avoid stress concentration near the dia-
phragm. Strain gauges, accelerometers, and cable extension trans-
ducers were placed at each of the seven stations.

Based on the configuration of the bridge, a numerical model
was created using the ansys program (Fig. 5). The bridge deck,
girders, diaphragms, shoulder, and railing are all modeled using
the solid elements, which have three translational DOFs for each
node. Since the prestressing force effect on vibration frequencies
of concrete beams and bridges has been studied by some re-
searchers (Saiidi et al. 1994; Hamed and Frostig 2006) and con-
troversy still exists concerning whether prestressing tends to
decrease the natural frequencies or has a negligible effect, in this
study, the prestressing force effect is taken into consideration by
modifying Young’s modulus of the concrete girders in the model
updating process. The rubber bearings are modeled using equiva-
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Table 8. Experimental Design Values for the Five Parameters

Factor values

X1 X2 X3 X4 X5
Trial number (GPa) (GPa) (10* kg/m?) (GPa) (MPa)
1 18.000 21.000 1.920 12.000 70.000
2 42.000 21.000 1.920 12.000 30.000
3 18.000 49.000 1.920 12.000 30.000
4 42.000 49.000 1.920 12.000 70.000
5 18.000 21.000 2.880 12.000 30.000
6 42.000 21.000 2.880 12.000 70.000
7 18.000 49.000 2.880 12.000 70.000
8 42.000 49.000 2.880 12.000 30.000
9 18.000 21.000 1.920 28.000 30.000
10 42.000 21.000 1.920 28.000 70.000
11 18.000 49.000 1.920 28.000 70.000
12 42.000 49.000 1.920 28.000 30.000
13 18.000 21.000 2.880 28.000 70.000
14 42.000 21.000 2.880 28.000 30.000
15 18.000 49.000 2.880 28.000 30.000
16 42.000 49.000 2.880 28.000 70.000
17 6.000 35.000 2.400 20.000 50.000
18 54.000 35.000 2.400 20.000 50.000
19 30.000 7.000 2.400 20.000 50.000
20 30.000 63.000 2.400 20.000 50.000
21 30.000 35.000 1.440 20.000 50.000
22 30.000 35.000 3.360 20.000 50.000
23 30.000 35.000 2.400 4.000 50.000
24 30.000 35.000 2.400 36.000 50.000
25 30.000 35.000 2.400 20.000 10.000
26 30.000 35.000 2.400 20.000 90.000
27 30.000 35.000 2.400 20.000 50.000
28 30.000 35.000 2.400 20.000 50.000
29 30.000 35.000 2.400 20.000 50.000
30 30.000 35.000 2.400 20.000 50.000

lent beam elements with six DOFs (three translational and three
rotational) for each node and a rigid connection is assumed be-
tween the rubber bearings and the supports. A rigid connection
has also been assumed between both girders and diaphragms and
between girders and the bridge deck. It should be noted that since
the damping coefficients of the bridge were difficult to obtain, in
this study, a damping coefficient of 2% was assumed for all
modes considered.

Because of their uncertainty, five parameters are selected as
variables. The five parameters are Young’s modulus of the con-
crete for the bridge deck, the seven girders, the diaphragms, the
density of the bridge deck, and the stiffness of the rubber bearing.
In the original model, the density of the concrete was taken as
2,323 kg/m?, Young’s modulus for the rubber bearings was
taken as 200 MPa [266.6 MPa is used in the LRFD specifications
by AASHTO (1998)], and Young’s modules used for concrete
were 25.12 GPa for both the bridge deck and diaphragms and
32.03 GPa for the seven girders, all of which were calculated
from the equation below (AASHTO 2004) using a design strength
of 44.82 MPa for the girders and 27.58 MPa for both the bridge
deck and diaphragms

Eo=w"%(0.043)\f/ (15)

where w,=density and f.=design strength of the concrete, respec-
tively.

Both dynamic and static tests (Fig. 6) were performed on the
bridge. For the static test, a loaded truck drove on the bridge
along lane 1 at a crawling speed (less than 2 m/s), and the bridge
responses on all the seven girders were recorded in time history.
In the dynamic test, the loaded truck is driven to the bridge with
a given speed. Modal analysis was done using the free vibration
response of the bridge from the dynamic test when the truck was
off the bridge and the first three natural frequencies were ob-
tained.

To obtain the relationship between the responses and the se-
lected parameters, the RSM is first used for the experimental de-
sign. A fractional design with five factors, each with five levels,
has been used for the experimental design in this study. Table 7
shows the details of this fractional design, where X1, X2, X3, X4,
and X5 represent Young’s modulus of the bridge girders, Young’s
modulus of the bridge deck, the density of the bridge deck con-
crete, Young’s modulus of the diaphragms, and the equivalent
Young’s modulus of the bearings.

The baseline values are usually chosen near the original esti-
mates based on construction drawings. However, to improve ac-
curacy, they can be adjusted for more realistic values after some
analyses. Therefore, the five parameters are taken as 30 GPa, 35
GPa, 2,400 kg/m3, 20 GPa, and 50 MPa based on a preliminary
study of the parameters, with the bearing modulus (50 MPa) sig-
nificantly different from the original estimate (200 MPa). The
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Table 9. Results for the Responses from Simulation

R(1) RQ) R(3) R(4) R(5) R(6) R(7) R(8) R(9) R(10)
Trial number (Hz) (Hz) (Hz) (n) () (p) (n) () (p) ()
1 7.901 10.679 16.412 —1.289 10.490 26.190 51.140 59.810 39.730 16.430
2 7.575 11.367 15.359 —0.239 10.270 23.940 46.630 55.340 36.860 15.060
3 7.838 11.041 16.372 —0.773 5.121 13.160 27.530 32.750 21.330 8.378
4 10.622 13.948 21.036 —0.963 3.899 10.930 24.560 29.880 18.600 5.739
5 6.083 8.694 12.906 —0.852 11.120 26.660 51.060 59.660 40.380 17.670
6 7.740 10.636 16.396 —0.659 9.715 23.550 46.640 55.350 36.280 14.090
7 8.155 10.589 15.915 —0.950 4.587 12.560 27.230 32.490 20.590 7.412
8 7.401 11.133 14.753 —0.798 4.384 11.450 24.850 30.170 19.280 6.536
9 6.983 11.168 14.843 1.582 12.540 26.550 45.420 51.660 38.090 22.180
10 8.888 13.347 18.843 1.033 10.930 23.560 42.030 48.570 34.000 16.990
11 9.356 13.309 21.039 —0.051 5.658 13.110 23.820 27.240 19.250 10.040
12 8.513 14.206 16.844 —0.103 5.191 11.850 22.160 25.900 17.940 8.389
13 6.924 10.305 15.547 0.986 12.010 26.230 45.440 51.650 37.430 20.930
14 6.622 11.090 13.455 1.518 11.410 23.880 42.080 48.700 34.580 17.940
15 6.844 10.794 14.362 0.293 6.115 13.540 24.070 27.530 19.950 11.060
16 9.291 13.280 19.715 —0.365 4.765 11.430 21.880 25.570 17.300 7.572
17 6.389 9.281 14.520 0.626 9.755 21.420 36.290 40.750 30.620 18.860
18 8.902 13.105 18.267 —0.356 6.258 14.830 28.830 34.080 22.760 9.370
19 5.598 9.180 11.581 10.820 32.460 62.600 0.000 0.000 87.740 47.220
20 9.121 12.879 19.267 —0.526 3.867 9.761 19.870 23.500 15.480 6.242
21 9.788 13.979 20.815 —0.511 6.671 16.000 30.640 35.790 24.230 10.600
22 7.423 10.615 15.738 -0.511 6.671 16.000 30.640 35.790 24.230 10.600
23 8.339 10.415 14.906 —1.500 4.260 14.130 37.160 46.940 27.490 6.236
24 8.379 12.917 17.797 0.468 7.302 16.010 28.190 32.270 23.200 12.500
25 5.023 9.502 10.663 0.278 8.118 17.680 32.160 37.550 26.620 13.320
26 9.212 12.561 19.536 —0.705 6.391 15.780 30.650 35.830 23.920 10.050
27 8.367 11.953 17.766 —0.511 6.671 16.000 30.640 35.790 24.230 10.600
28 8.367 11.953 17.766 —0.511 6.671 16.000 30.640 35.790 24.230 10.600
29 8.367 11.953 17.766 —0.511 6.671 16.000 30.640 35.790 24.230 10.600
30 8.367 11.953 17.766 —0.511 6.671 16.000 30.640 35.790 24.230 10.600
Table 10. Updated Results for the Five Parameters

X1 X2 X3 X4 X5

Parameter (GPa) (GPa) (kg/m?) (GPa) (MPa)
Original estimate 25.12 32.03 2323 25.12 200
Updated 29.44 35.87 2693 10.07 53.5
Difference (%) 17.18 11.99 15.93 —59.91 —73.25

ranges for each parameter can be defined by assuming the value
for a unit change of each parameter, which are taken as 40, 40, 20,
40, and 40% of the baseline values for the five parameters, re-
spectively. The selection of these values is based on personal
experience. The reason why a 20% change of the baseline value is
taken as a unit change for the density of the concrete is because
normally the density of the concrete will not change as much as
the strength of the concrete. The density changes also reflect the
additional mass of nonstructural members. Finally, the experi-
mental design with designed values for the whole set of param-
eters is listed in Table 8.

According to the experimental design, numerical analysis is
performed and bridge responses are obtained. Depending on the
purpose of model updating, different bridge responses can be used
in the model updating process. In this study, the bridge model was
first updated with the purpose of achieving good agreement be-

tween the first three natural frequencies and the maximum strains
on the girders from the static test. Numerical results of the re-
sponses are shown in Table 9, where R(1), R(2), and R(3) denote
the first three natural frequencies of the bridge, respectively, and
R(4), R(5), R(6), R(7), R(8), R(9), and R(10) represent the maxi-
mum strains at the seven measurement stations (from G1 to G7),
respectively.

Regression has been performed to obtain the relationships be-
tween the responses and the parameters. A full second-order re-
gression function has been used in the RSFs for all the responses.
Results of the RSFs can be expressed in matrix form as follows:

R=A"X (16)

where R=response vector; X=variable vector; and A

=coefficient. R and X can be expressed as follows:
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Matrix A can be written in the matrix form as follows:

[ 62314 84327 13.1110 3.5006 30.0555 66.0570 122.8600 143.6400 98.7830 47.0420 ]
0.0765 0.1265 0.0647 0.0616 -0.0614 -0.1827 -0.1483 -0.0609 -0.1907 -0.3363
0.1003  0.1043  0.2586 —0.4505 -1.2275 -2.3120 -3.8426 -4.3993 -3.1674 -1.7520

-2.9719 -3.7439 -6.5834 0 0 0 0 0 0 0
—-0.0414 0.1076  0.0927  0.3529 0.4475 04247 -0.3338 -0.7301 0.0451  0.8590
0.0826  0.0692 0.1406 0.0173  0.0160  0.0571  0.1467 0.1734  0.0793 -0.0041
0.0003  0.0005 0.0001 -0.0007 0.0002 0.0015 0.0024  0.0024  0.0022  0.0017
—-0.0051 —-0.0099 0.0236 0 0 0 0 0 0 0
—-0.0001 0.0002 -0.0019 -0.0013 -0.0006 -0.0000 0.0024  0.0030  0.0001 -0.0032
0.0005 0.0001 0.0013  0.0001 0.0001  0.0000 -0.0000 -0.0001 0.0001 0.0002
A=| -0.0061 -0.0081 —-0.0316 0 0 0 0 0 0 0
-0.0001 0.0002 0.0013 -0.0027 -0.0009 0.0011  0.0046  0.0059  0.0021 -0.0032
0.0006  0.0003 0.0011  0.0002 0.0001 -0.0001 -0.0003 -0.0003 -0.0001 0.0002
0.0081 -0.0094 0.0117 0 0 0 0 0 0 0

—-0.0045 -0.0026 -0.0118 0 0 0 0 0 0 0

-0.0000 -0.0002 0.0021 -0.0002 0.0001 0.0002 -0.0000 -0.0001 0.0000 -0.0000

—-0.0009 —-0.0009 -0.0016 —0.0003 0.0002 0.0004 -0.0020 -0.0034 -0.0004 0.0031

-0.0010 -0.0009 -0.0024 0.0062 0.0131 0.0233  0.0379  0.0434 0.0315 0.0184

04681 0.6190 1.0249 0 0 0 0 0 0 0
0.0007 -0.0002 -0.0038 -0.0032 -0.0081 -0.0111 -0.0041 0.0009 -0.0061 -0.0115
L—0.0007 -0.0004 -0.0014 -0.0010 —0.0004 -0.0007 -0.0014 -0.0017 -0.0010 -0.0004 ]
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The first three natural frequencies obtained from the modal
analysis of the field bridge dynamic tests are 8.19, 11.11, and
15.79 Hz, respectively. The maximum strains at the seven mea-
surement stations (from G1 to G7) obtained from the static test
are —4, 6.5, 12, 32, 68, 23, and 2.5, respectively. An objective
function can then be built as the summation of the weighted ab-
solute residuals between the measured responses and the pre-
dicted responses from the RSFs, which is shown below:

10
Foy= >, coef(i) X |R(i) - M(7)| (17)
i=1

where  R(i)=predicted response from the RSF; M(i)
=corresponding measured response; and coef(i)=weight coeffi-
cient used to denote the importance level of each residual term
|R(i)—M(i)| in the objective function. The weight coefficients for
different responses are usually determined based on the purpose
of model updating. Therefore, different combinations of weight
coefficients are possible. It should be noted that Eq. (17) uses a
different form from the typical one used in Eq. (6). The main
reason behind this change is the consideration of the relative
weight of each residual term in the objective function. Since noise
and error always exist in field measurements, taking a square of
each residual term, as done in Eq. (6), may amplify the impor-
tance of some residual terms. A proper combination of weight
coefficients can ensure that each residual term is treated according
to its relative importance in the objective function.

In this study, coef is taken as [555 1223 03 1] based on the
results of a sensitivity study and personal judgment. The reason
why the frequencies take larger weight coefficients than the
strains is that they are less sensitive to the parameter changes than
the strains; the strain from G5 takes a weight coefficient of 0
because of an obvious error with the measured data from GS5;
also, larger weight coefficients are taken for the girders closer to
the lane where the truck travels because the data obtained from
those girders are considered to be more reliable and important
than those from other girders.

The objective function can then be optimized using the GA,
with the lower and upper bounds for the five parameters set to be
[15 GPa; 20 GPa; 1,800 kg/m?*; 0 GPa; 0 MPa] and [50 GPa; 60
GPa; 3,000 kg/ m?; 50 GPa; 400 MPa] based on personal judg-
ment. The updated results of the five parameters and their differ-
ences from the original values are shown in Table 10.

Table 11. Reconstructed First Three Natural Frequencies

Natural frequencies First Second Third
Measured 8.19 11.11 15.79
Reconstructed 8.19 10.79 16.23
Difference (%) 0 -29 2.8

As can be seen from the table, both Young’s modulus of the
bridge deck and girders have been increased, which is predictable
because the strength of concrete increases with time and their
initial cast strengths are usually higher than that specified in the
construction drawings. The large decrease of Young’s modulus of
the diaphragms could be due to the fact that the diaphragms are
not fully connected to the girders (Cai and Shahawy 2004), which
can be observed from the field. Also, the small increase in the
density of the bridge deck could be due to the addition of wearing
surfaces, while the large decrease of Young’s modulus of the rub-
ber bearings could be due to the uncertain restraint condition of
the bearing at the supports (Barker 2001). For example, in this
case, the real connections between the rubber bearings and the
supports are not rigid moment connections, with the rubber bear-
ings able to move over the supports.

To verify the updated results for Young’s modulus of the con-
crete, the strength of the concrete of the existing bridge was tested
using a rebounding hammer. After conversion using Eq. (15),
Young’s modules of the concrete can be obtained as 29.99 GPa
(39.30 MPa in strength), at least 36.62 GPa (at least 58.61 MPa in
strength), and 30.77 GPa (41.37 MPa in strength) for the bridge
deck, girders, and diaphragms, respectively. As can be seen, these
rebounding hammer test results for the bridge deck and girders
are very close to the updated results, which confirms the reliabil-
ity of the updated results. Again, the difference of the diaphragm
is due to the connection details, not the material itself.

The first three natural frequencies predicted using the updated
parameters and their differences between the measured param-
eters are shown in Table 11. The maximum strains and maximum
deflections on seven girders using the reconstructed model are
also compared with those measured from field tests in Fig. 7.
Again, the measured strain from G5 is not given in the figure
because of an obvious error with the measurement data.

From Table 11 and Fig. 7, it can be seen that the reconstructed
strains from the updated bridge model match the measured strains

50 25
40t . 2 _
30} 1 €15} 1
£ 2 1 & 1 ]
] =
10} 1 A 05f 1
of . 0 .
-10 . .
Gl G2 G3 G4 G5 G6 G7 Gl G2 G3 G4 G5 G6 G7
@) (®)
Fig. 7. Reconstructed and measured responses on the seven girders: (a) strains; (b) deflections (+——, measured response; * —, reconstructed

response).
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Fig. 8. Reconstructed and measured deflections on the seven girders

when using deflections in model updating (+——, measured response;
* —, reconstructed response).

from the field test very well, which demonstrates that the pro-
posed RSM can be used to update the parameters efficiently.
However, the match between the measured and reconstructed de-
flections in Fig. 7(b) is not as good as that of the strains in Fig.
7(a). A possible explanation could be that the strains are used in
the objective function rather than the deflections. Therefore, it
could be predicted that if deflections were used in the objective
function, a better match-up could be achieved for deflections.

For the purpose of demonstration, the five parameters were
also updated based on the natural frequencies and deflections of
the seven girders, and the following updated results were obtained
as 24.77 GPa, 27.67 GPa, 10.0 GPa, 2705 kg/m?, and 33.06
MPa, respectively. Significant differences can be found between
the two sets of updated parameters obtained with different objec-
tive functions. One possible reason for the differences could be
that the measured deflections were larger than the true deflections
of the seven girders since the deflection gauges were set on sand-
evened surface instead of on a solid base. An overestimated de-
flection makes the updated bridge model more flexible, which
results in a lower modulus of elasticity.

The comparison of the measurement and reconstructed deflec-
tion is shown in Fig. 8, and a good match is achieved. As was
shown in a separate study where the updated model of the present
study was used to identify dynamic vehicle wheel loads (Deng
and Cai 2008), the vehicle axle loads can be identified based on
either strain or deflection, as long as the corresponding updated
model is used in the identification process. Therefore, based on
different intensions of using the updated model, one can strategi-
cally choose different objective functions or change the weight of
the variables.

Conclusion and Closing Remarks

A new, practical, user-friendly FE model updating method using
the RSM and GA has been proposed. Parameters that need to be
updated are first selected, and experimental design on the selected
parameters can be optimized using the RSM. Structural responses
are also selected based on the purpose of model updating. Nu-
merical simulation can then be performed using the combinations
of parameters from the experimental design, and structural re-
sponses can be obtained. RSFs for the structural responses can
then be obtained by the regression method. Second-order RSFs
are commonly used; however, sometimes third-order RSFs are
needed to achieve sufficient accuracy. After that, an objective
function can be built up using the residuals between the measured

responses and the predicted responses from the built RSFs and
can then be optimized to obtain the updated parameters using the
GA.

The proposed methodology avoids developing sensitivity ma-
trices and is much more convenient than a typical method re-
ported in the literature. By employing second- or even higher-
order polynomials, the RSM can model the curvature effects
between the response and parameters which the sensitivity-based
methods are not able to reflect. By adjusting the range for each
parameter and adding or removing some cross terms or higher-
order terms, appropriate RSFs with good accuracy and coverage
of a large range of parameters can be obtained.

In order to successfully identify the parameters, the number of
responses used in the objective function should not be less than
the number of parameters. The proposed method has been applied
to the model updating of a simulated beam as well as an existing
bridge. Substantial agreement has been observed between the up-
dated and real parameters for the simulated beam. For the existing
bridge, the measured bridge responses and their reconstructed
counterparts from the updated bridge model also match up very
well, with reasonable explanations available for the updated pa-
rameters. However, to use the RSM for optimal experimental de-
sign efficiently, the number of parameters is usually limited to no
more than eight. Experimental design involving more than eight
parameters can be very complicated and the resulting RSFs can
sometimes be difficult to interpret.
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