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a b s t r a c t

Most researchers assumed the road surface inputs as stationary random process in time domain when
studying vehicles with variable speed. This assumption was made to avoid the complexity of the non-
stationary randomprocesses. This paper presented a newmethod of analyzing the non-stationary random
response of bridges. Using the covariance equivalence technique, the non-stationary random responses
of wheels in time domain were obtained, and thus a new method of analyzing the non-stationary
random response of bridges was developed. A two-axle vehicle model and three bridge models were
analyzed, namely, a single-span uniform Bernoulli–Euler beam, a three-span stepped beam, and a three-
span continuous non-uniform bridge deck. The bridge–vehicle coupling equations were established by
combining the equations ofmotion of both the bridge and the vehicle using the displacement relationship
and the interaction force relationship at the contact points. The numerical results indicated that the
responses of the tires induced by the road roughness are the non-stationary process, and the amplitudes
of responses change as the vehicle velocity varies. Using the responses of the tires as the inputs to study
the non-stationary vibration of bridge–vehicle system with variable speed one can obtain more accurate
solutions.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of interaction between vehicles and bridges has
attracted much attention over the last few decades due to the
drastic increase of the proportion of heavy and high-speed vehicles
in highway and railway traffic. Many numerical methods were
developed to study the influence of different factors on the
dynamic behavior of bridges. Bridge structures weremodeledwith
the finite element method using three-node Euler–Bernoulli beam
elements [1–4], eight-node quadrilateral Kirchhoff plate/shell
elements [5], and an assemblage of beam and plate elements [6].
Vehicles were modeled with different degrees of complexity.
The simplest model was the quarter truck vehicle model [7,8].
Another two commonmodelswere the two-dimensionalmodel [9]
and the three-dimensional model [10–17]. Based on the models
described above, the bridge–vehicle system was divided into
subsystems with an interface between the bridge and the vehicle.
The equations of motion of the bridge and the vehicle were
in general solved separately by an iterative procedure [5]. A
vehicle–bridge interaction element was developed and used to
solve the problem with a series of vehicles moving in the same
direction across a bridge [18,19].
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When investigating the dynamic response for vehicles with
variable speed, most of the previous studies either did not realize
the non-stationary nature of the random response [20–23] or the
non-stationary random response of the bridge–vehicle systemwas
simplified as stationary response in time domain [24–28]. While
this simplification avoids the complexity of the non-stationary
random processes and significantly reduces the computation
effort, verification of this simplification needs to be performed
before using it with confidence.
In general, road roughness can be simulated as a stationary

random process in space domain, while a vehicle moves with a
constant speed. It is also a stationary random process in time
domain, and this has been concluded by Honda et al. [29],
Dodds and Robson [30], and Marcondes et al. [31]. Therefore,
the response of the tire induced by the road roughness is a
stationary random process in time domain. However, when a
vehicle is traveling at variable speed, as will be shown later, the
response of the tire induced by the road roughness is essentially
a non-stationary random process in time domain [32–36]. As
a result, the vibration responses of the vehicle–bridge system
caused by road roughness should be considered as a non-stationary
random vibration response. If the stationary random process is
also used to simulate the road roughness, as in Refs. [24–26],
this character of non-stationary vibration cannot be obtained.
Therefore, introducing a new method to study this non-stationary
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Nomenclature

xi (i = 1, 2, 3, 4, 5) Vertical displacements of the centroid of
the vehicle

mf ,mr ,mp,mb Mass of front the axle, rear axle, seat and
tractor

J Rotational moment of inertia of the tractor
kp, kf , kr , cp, cf , cr Stiffness and damping of the each axles
ktf , ktr Stiffness of the front and rear wheels
l1, l2, l3 Distances from the front axle, rear axle, and the

centroid of seat to the centroid of tractor
qf (t), qr(t) Non-stationary random responses of the front

and rear wheels
m(x) Mass per unit length of the beam
E(x), c Young’s modulus and damping of the beam
I(x) Moment of inertia for the cross-section of the beam
y(x, t) Vertical displacement of the beam at position x and

time t
ṡ, s̈ Velocity and acceleration of the vehicle
G1,G2 Vehicle gravity distributed to the front and rear

axles
ξi(t), φi(x) The ith generalized modal coordinate and the ith

mode shape of the beam ωi natural frequencies of
the beam

ηi Percentage of the critical damping for the ith mode
of the beam

M, C, K Mass, damping, and stiffness matrices of the vehi-
cle–bridge system

P,U Global load vector and the global displacement
vector of the entire system

sq(n) Spatial power spectral density
sq(n0) Coefficient of road roughness
n Spatial frequency (1/m)
Ωq Spatial angular frequency
Ωc Lowest cut-off angular frequency
H(Ωq) The transfer function
SW The PSD of white noise
W (sc) Stationarywhite noise processes having a frequency

modulated form
qf (sc) Stationary random road surface inputs in space

domain
W1(t) The stationary white noise process
δ(·) The Dirac delta function
τ Interval time between the front and rear wheels
I Dynamic impact factor of the bridge
Rdm, Rsm Maximumvertical dynamic and static deflections of

the bridge under the vehicle loading
k Elastomeric bearing calculated in themode shape of

the beam

vibration is significant. A few approaches of analyzing the non-
stationary random vibration have been developed when the
vehicle is subjected to acceleration or braking. The state-space
approaches to analyze the non-stationary response of a vehicle
traveling on a homogeneous rough roadwere presented [32,33]. In
their study, the vehicle dynamics were modeled by liner ordinary
differential equations in time domain while the excitation process
of rough road was modeled by a differential equation in spatial
domain. Nigam and Yaday [34] presented another method for
solving non-stationary response of a vehicle, in which differential
equations with variable coefficients were first established in space
domain, and the time changing covariance was then computed.
Based on this work, two different improved methods with higher
computational efficiency were proposed by Hwang et al. [35], and
Zhang et al. [36], respectively. Sasidhar and Talukdar [37] used
Fig. 1. Schematic of the bridge–vehicle coupled system.

the Monte Carlo simulation technique to simulate deck profile for
generating input samples in numerical integration of the system
equations. However, the computation effort of this method is very
large.
This paper presented a new method of simulating the non-

stationary random responses of the vehicle tires and thus
developed a new method of analyzing the non-stationary random
response of bridges. Using the covariance equivalence technique,
the non-stationary random responses of the moving tires induced
by the road roughness in time domain were obtained, and
then this non-stationary response can be treated as the non-
stationary inputs of the bridge–vehicle coupled system. A two-axle
vehicle model and three bridge models were analyzed, namely, a
single-span uniform Bernoulli–Euler beam, a three-span stepped
beam, and a three-span continuous non-uniform bridge deck. The
vehicle–bridge coupling equations were established by combining
the equations of motion of both the bridge and vehicle using the
displacement relationship and the interaction force relationship
at the contact points. The differential equations of motion of the
coupled systems were derived from the Lagrangian formulation.
The stationary random process and the non-stationary response of
tires are respectively treated as the inputs of the bridge–vehicle
coupled system. The comparison of the effect of the two inputs
on the mid-span deflection and the impact factors were compared
with different parameters including the coefficient of surface
roughness, vehicle acceleration, and vehicle braking.

2. Vehicle and bridge models

A vehicle model with five-degree-of-freedom (5-DOF) shown
in Fig. 1 was used as a representative of modern freight vehicles.
The five DOFs are denoted by xi (i = 1, 2, 3, 4, 5). The masses of
the front and rear axle assembly are denoted by mf and mr , and
the masses of the seat and tractor are denoted as mp and mb,
respectively. J represents the rotational moment of inertia of the
tractor. Each vehicle axles has its stiffness and damping, they
are denoted by kp, kf , and kr , and cp, cf , and cr , respectively. The
stiffness of the front and rear wheels are denoted by ktf and ktr .
l1, l2, and l3 are distances from the front axle, rear axle, and the
centroid of seat to the centroid of tractor, respectively. The non-
stationary random responses induced by the road roughness of the
front and rear wheels are denoted by qf (t) and qr(t), respectively.
The three bridge superstructures model used in the present

study are: a single-span uniform Bernoulli–Euler beam, a three-
span continuous stepped beam, and a three-span continuous non-
uniform bridge deck. m(x) shown in Fig. 1 is the mass per unit
length of the beam; E(x) and c are Young’s modulus and damping
of the beam, respectively; I(x) is the moment of inertia for the
cross-section of the beam; y(x, t) is the vertical displacement of the
beam at position x and time t . The location of the vehicle is defined
by the vehicle coordinate s. As a result, ṡ and s̈ are the velocity
and acceleration of the vehicle, respectively. It was assumed that
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the bridge was in equilibrium under its own weight before the
presence of the vehicle on the bridge, and thewheels of the vehicle
remain in contact with the bridge surface at all times.
The equations of motion of the vehicle are derived as:

mpẍ1 + cp(ẋ1 − ẋ2 − ẋ3l3)+ kp(x1 − x2 − x3l3) = mps̈y′p (1)
mbẍ2 + cp(ẋ2 + ẋ3l3 − ẋ1)+ kp(x2 + x3l3 − x1)
+ cr(ẋ2 − ẋ3l2 − ẋ5)+ kr(x2 − x3l2 − x5)+ cf (ẋ2 + ẋ3l1 − ẋ4)

+ kf (x2 + x3l1 − x4) = mbs̈y′b (2)
J ẍ3 + cp(ẋ2 + ẋ3l3 − ẋ1)l3 + kp(x2 + x3l3 − x1)l3
+ cr(ẋ3l2 + ẋ5 − ẋ2)l2 + kr(x3l2 + x5 − x2)l2
+ cf (ẋ2 + ẋ3l1 − ẋ4)l1 + kf (x2 + x3l1 − x4)l1 = 0 (3)

mf ẍ4 + cf (ẋ4 − ẋ3l1 − ẋ2)+ kf (x4 − x3l1 − x2)

+ ktf (x4 + yf )−mf s̈y′f = ktf qf (4)
mr ẍ5 + cr(ẋ5 + ẋ3l2 − ẋ2)+ kr(x5 + x3l2 − x2)

+ ktr(x5 + yr)−mr s̈y′r = ktrqr . (5)
The equation of motion of the beam can be written as:

EI(x)y′′′′ +m(x)ÿ+ cẏ = [G1 − ktf qf
+ ktf (x4 + yf )]δ(x− s− l1)

+ [G2 − ktrqr + ktr(x5 + yr)]δ(x− s+ l2) (6)
where yp, yb, yf , and yr are the displacements of the beam at
the location of the centroid of the cab, the tractor, and the front
and rear axles, respectively. G1 and G2 are the vehicle gravity
distributed to the front and rear axles, respectively.
With the modal superposition technique, the displacements of

the beam y(x, t) can be expressed as:

y(x, t) =
N∑
i=1

ξi(t) · φi(x) (7)

where N is the total number of modes used for the beam under
consideration; ξi(t) and φi(x) are the ith generalized modal
coordinate and the ithmode shape of the beam, respectively. Using
the modal superposition technique, the Eq. (6) can be written as:

ξ̈i(t)+ 2ωiηiξ̇i(t)+ ω2i ξi(t) =

[
G1 − ktf qf

+ ktf

x4 + m∑
i=1

ξi(t) · φi(x)

∣∣∣∣∣
x=s+l1

φn(s+ l1)
+

G2 − ktrqr + ktr
x5 + m∑

i=1

ξi(t) · φi(x)

∣∣∣∣∣
s−l2

φn(s− l2)
(8)

whereωi is the natural frequencies of the beam,ηi is the percentage
of the critical damping for the ith mode of the beam.
Eqs. (1)–(5) and (8) can be rewritten in the matrix form as:

MÜ + CU̇ + KU = P (9)
whereM , C , and K are themass, damping, and stiffness matrices of
the vehicle–bridge system, respectively; P andU are the global load
vector and the global displacement vector of the entire system,
respectively, and written as:
P = [0 0 0 ktf qf ktrqr(G1 − ktf qf )φ1(s+ l1)

+ (G2 − ktrqr)φ1(s− l2) · · · (G1 − ktf qf )φm(s+ l1)
+ (G2 − ktrqr)φm(s− l2)]T

U =
[
x1 x2 x3 x4 x5 ξ1 ξ2 · · · ξm

]T
.

Eq. (9) can then be solved using the Newmark-β method. In the
present study, the damping of bridge structures was assumed to
be of the Rayleigh type.
3. Simulation of non-stationary randomresponse of thewheels

3.1. Simulation of non-stationary random response of the front wheel

As discussed earlier, a road roughness is usually regarded as
a stationary random process in space domain. If a vehicle travels
with a constant speed, on account of the relationship between
the moving distance (s) and time (t), the road roughness is
also a stationary random process in time domain. When study
a bridge vibration under moving vehicles with constant speed,
this stationary can be used as the inputs. However, the responses
of the tires are essentially a non-stationary random process in
time domain while a vehicle travels at variable speeds. Nigam and
Yaday [34], Hammond and Harrison [38], and Hwang and Kim [35]
proposed differentmethods for solving the non-stationary random
process, but the computation efforts required by their method
were very large. Therefore, this section presents a new method
of obtaining the non-stationary random response by using the
covariance equivalence technique.
The Power Spectral Density (PSD) of road roughness in space

domain can be expressed as:

sq(n) = sq(n0)n20/n
2, (10)

where sq(n) is the spatial power spectral density; sq(n0) is called
the coefficient of road roughness; n is spatial frequency (1 /m);
and n0 = 1/2π . The relationship between the spatial angular
frequency and spatial frequency can be expressed as Ωq = 2πn,
and Eq. (10) can be rewritten as

sq(Ωq) = sq(n0)n20/Ω
2
q . (11)

In Eq. (11), when Ωq → 0, sq(Ωq) → ∞; an improved equation
for the PSD of road roughness in frequency domain is introduced
as

sq(Ωq) = sq(n0)n20/(Ω
2
q +Ω

2
c ), (12)

whereΩc = 2πnc is the lowest cut-off angular frequency.
Eq. (12) can be considered as a response of a first order linear

system to white noise excitations. Based on the theory of random
vibration, the following relationship can be obtained from [36].

sq(Ωq) =
∣∣H(Ωq)∣∣2 SW , (13)

where H(Ωq) is the transfer function; and SW is the PSD of white
noise and it is normally equal to 1. Based on Eq. (11), H(Ω) can be
written as:

H(Ω) =
n0
√
sq(n0)

Ωc + jΩ
. (14)

From Eq. (14), the differential equation of road roughness can
be expressed as:

dqf (sc)
dsc

+Ωcqf (sc) = n0
√
sq(n0)W (sc), (15)

where W (sc) is the stationary white noise processes in space
domain, qf (sc) is the stationary random response in space domain,
and sc is the position of the front wheel from the entrance of the
bridge.
In order to derive the response in time domain, the following

equation needs to be introduced:

dqf (sc)
dsc

=
1
ṡc

dqf (t)
dt

, (16)

where qf (t) is a non-stationary random response induced by the
road roughness in time domain, when the vehicle travels with a
variable speed ṡc , which is a function of time t .
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Fig. 2. Samples of time history of non-stationary random responses with vehicle moving at variable speed:(a) front wheel response with vehicle moving at ṡ = 0 (m/s);
s̈ = 2 (m/s2); (b) rear wheel response with vehicle moving at ṡ = 0 (m/s); s̈ = 2 (m/s2); (c) front wheel response with vehicle moving at ṡ = 20 (m/s); s̈ = −4 (m/s2);
(d) rear wheel response with vehicle moving at ṡ = 20 (m/s); s̈ = −4 (m/s2).
Substituting Eq. (16) into Eq. (15), the following can be
obtained:

q̇f (t)+ ṡcΩcqf (t) = n0ṡc
√
sq(n0)W [sc(t)]. (17)

W [sc(t)] is a non-stationary white noise processes having a
frequency modulated form in time domain, the technique of the
evolutionary spectral analysis cannot be directly used. To solve
the Eq. (17), it is necessary to transfer the non-stationary white
noise processes into the stationary white noise processes. The
technique of covariance equivalence is one of the effectivemethods
to transfer the non-stationary white noise processes into the
stationary white noise processes. The main focus of this technique
is introducing a stationary white noise process, whose covariance
equals to the covariance of the non-stationary white noise process.
The details of the technique of covariance equivalence can be
obtained from [36,39].
By introducing stationary white noise process W1(t) instead

of non-stationary white noise process W [sc(t)], and using the
technique of covariance equivalence [36,39],

E{W [sc(t1)]W [sc(t2)]} = δ[sc(t2)− sc(t1)] =
δ(t2 − t1)
ṡc(t1)

(18)

and

E
[
W1(t1)
√
ṡc(t1)

W1(t2)
√
ṡc(t2)

]
=
δ(t2 − t1)
ṡc(t1)

, (19)

whereW1(t) is the stationary white noise process, δ(·) is the Dirac
delta function, and comparing Eqs. (18) and (19), it can be found
that the covariant of W [sc(t)] and

W1(t)√
ṡc
are equivalent. Hence

Eq. (17) becomes as

q̇f (t)+ ṡcΩcqf (t) = n0
√
sq(n0)ṡcW1(t), (20)

Eq. (20) is the equation of obtaining the non-stationary random
response induced by the road roughness of front wheel.
3.2. Simulation of non-stationary random response of the rear wheel

The description of correlated disturbances between front and
rear wheels can be written as follows:

qr(t) = qf [t − τ ] (21)

where qr(t) is the non-stationary random response of the rear
wheel in time domain; qf (t) is the non-stationary random
response of the front wheel in time domain; τ is the interval time
between the front and rear wheels.
Due to the τ is not the constant for the vehiclemovingwith varying
speed, Eq. (21) cannot be easily used to obtain the non-stationary
response of the rear wheel by the method of Fourier transform.
Based on the Ref. [36], the Eq. (21) can be written as:

qr(t) = qf [sc(t)− lc], (22)

lc is the distance between the front and rear wheels and it can be
expressed as lc = l1 + l2.
By expanding Eq. (22) by the method of Taylor formula

and calculating the derivatives and introducing the following
expression

d2qf (sc)
ds2c

=
1
ṡ2c

d2qf (t)
dt2

−
s̈c
ṡ3c

dqf (t)
dt

. (23)

The following equation can be obtained

q̇r(t) = (−2ṡc/lc)qr(t)− q̇f (t)+ (2ṡc/lc)qf (t). (24)

Eq. (24) is the equation of the non-stationary random response of
the rear wheels. To solve the Eqs. (20) and (24), the non-stationary
random response of the front and rear wheels can be obtained.

3.3. Comparison of non-stationary and stationary response of the
wheels

To compare the difference of non-stationary random response
and stationary response to the wheels of the vehicle, two kinds
of time history of the responses were generated and were shown
in Figs. 2 and 3, respectively. The simulated parameters were
as follows: the coefficient of road roughness obtained from the
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Fig. 3. Samples of time history of stationary random responses: (a) vehicle moving at 5 m/s; (b) vehicle moving at 10 m/s.
Table 1
Classification of road surface roughness.

Description sq(n0)10−6 (m3/cycle)

Good 16
Average 64
Poor 256
Very Poor 1024

International Organization for Standardization [40] was sq(n0) =
64 × 10−6 (m3/cycles); the vehicle started running when initial
speed was ṡ = 0 (m/s) and acceleration was s̈ = 2 (m/s2).
Using Eqs. (20) and (24) for non-stationary random responses,
Fig. 2(a) and (b) show the amplitude of wheel’s responses qf (t)
and qr(t) produced by road roughness increases as the time
goes due to the increases of vehicle velocity. While the vehicle
moving with deceleration, Fig. 2(c) and (d) show the amplitude of
wheel’s responses decreases as the time goes due to the decreases
of velocity. As vehicular speed approaches to zero, so does the
effective qf (t) and qr(t). If the vehicle moves with a constant
speed, two samples of time history of stationary random responses
for 5 m/s and 10 m/s were obtained like the Refs. [24–26] and
also shown in Fig. 3, which shows the amplitude of wheel’s
response is stationary, and the vehicle velocity almost has no
effect on the amplitude of wheel’s response. Figs. 2 and 3 show
obvious difference between stationary random responses and non-
stationary random response for the vehicle wheels. It is very clear
that the vibration of the vehicle with acceleration is more severe
than the vibration of the vehicle with constant velocity. This can
be explained verywell from the samples of non-stationary random
responses. Therefore, the simulation of non-stationary random
responses to tires is more accurate than the simulation in other
papers.

4. Numerical study

The 5-DOF vehicle model shown in Fig. 1 was used in the
numerical study. The parameters of the vehicle, introduced in
precious sections, were directly taken from another study [41], and
are shown as follows:

mp = 850 kg; mb = 21.015× 103 kg; mr = mf = 2500 kg;
l1 = 1.2 m; l2 = 3 m;
kp = 230 710 N/m; kr = 2029 200 N/m;
kf = 1932 600 N/m; ktr = 3700 000 N/m;
ktf = 2080 000 N/m;
cp = 15 000 N s/m; cf = cr = 10 000 N s/m.

The road surface roughness used in the present studywas based
on the Ref. [40]. The values of sq(n0) used in the present study are
given in Table 1.
The dynamic impact factor of the bridge subjected to moving

vehicle loading is calculated as:

I = Rdm/Rsm − 1 (25)
k k

Fig. 4. The model of the bridge.

where Rdm and Rsm denote the maximum vertical dynamic and
static deflections of the bridge under the vehicle loading,
respectively.
When the vehicle travels at variable speed, the stationary

random process like the Refs. [24–26] and the non-stationary
response of tires, in time domain, were considered, and they were
both used as inputs in the bridge–vehicle coupled system. The
effects of the two different inputs on the impact factor were then
compared as follows.

4.1. Example 1: a uniform single-span bridge deck supported by
elastomeric bearings

In bridge design, elastic bearings are usually installed between
the bridge girders and the cap beam of the supporting structure to
reduce the vibration of the superstructure. The dynamic response
of bridge deck supported by elastomeric bearings subjected to
moving loads was analyzed by Yau et al. [42] and Chen et al. [43].
Therefore, the model of the bridge deck supported by elastomeric
bearings is typical. In the present study, the model of the bridge
deck used by Chen et al. [43], as shown in Fig. 4, was used. The
parameters of the bridge deck used are as follows:

m = 1.5× 104 kg/m, E = 2× 1011 N/m2,
I = 0.048 m4, l = 30 m, k,

where m is the mass per unit length of the bridge deck; E is the
Young’s modulus of the bridge deck; k is the elastomeric bearing
and is calculated in obtaining the mode shape of the beam; and l
is the length of the bridge deck. In the reference studied by [43],
the stationary responses of the beam under vehicular load with
constant speedwere obtained. To verify the accuracy of the present
computational program, it should be the best way to compare
with the non-stationary responses of the beam obtained by other
researchers. However, to the best of the writers’ knowledge, few
references for the studying the non-stationary responses of a beam
under vehicular loads are available. The present computational
program also can study the stationary responses under vehicular
loads when the vehicles moving with constant speeds. Therefore,
the deflection of the beam at mid-span obtained in the present
studywas compared to that obtained by [43]. The first threemodes
of the beam were used for the solution of the equations, and the
time-step inNewmark-βmethodwas taken as 0.005 s. Fig. 5 shows
the comparison of the effects of vehicular speed on the mid-span
deflections in this study and those from [43] with two different
elastomeric bearings. One can find that the results obtained in this
study match the results from [43] very well.
The effects of the two random inputs on the impact factors

were studied in the following using different parameters for the
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Fig. 5. Comparison of mid-span deflections of the present study and those
from [43].

vehicle–bridge system. Three common initial speeds, 5 m/s,
10 m/s, and 15 m/s, for vehicle were used, and two acceleration,
4 m/s2 and 6 m/s2, were considered. Two different coefficients of
road surface roughness, sq(n0) = 64 × 10−6 (m3/cycle) for Aver-
age and sq(n0) = 256×10−6 (m3/cycle) for Poor,were considered.
Fig. 6 shows the effect of the two different kinds of inputs on

themid-span deflection of the beamwhen the vehiclemovingwith
ṡ = 10 m/s; s̈ = 4 m/s2. Fig. 6(a) shows that the impact factors
are I = 0.127 and I = 0.212 for the stationary and non-stationary
random inputs, respectively. Fig. 6(b) shows that the impact factors
resulted from the stationary and non-stationary random inputs are
I = 0.213 and I = 0.323, respectively. In both cases, the difference
between stationary and non-stationary inputs is significant.
To compare the solutions of the two different random inputs

on the impact factors with different accelerations when the other
parameters remain the same, the solutions with vehicular speed
ṡ = 10 m/s; s̈ = 6 m/s2 are computed and shown in Fig. 7.
Comparing the mid-span deflections from Fig. 6(a) with those
in Fig. 7, it can be seen that when the acceleration varies, the
mid-span deflections are also affected by the two different kinds
of model of random inputs. For example, for the model of non-
stationary random inputs, the maximummid-span deflections are
1.53 (mm) and 1.73 (mm) for s̈ = 4 m/s2 and s̈ = 6 m/s2,
respectively.
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Fig. 7. The mid-span deflections of the beam versus vehicle positions.

More cases with different combination of parameters including
the coefficients of road surface, initial speeds, and accelerations
were investigated and results are summarized in Tables 2–4.
The results indicate that different simulations of the random

inputs can lead to different mid-span deflections and impact
factors; these differences can be easily explained from the
simulation of the responses induced by road surface of the wheels
discussed earlier. Therefore, for single-span bridge deck supported
by elastomeric bearing, a proper random model simulating the
road surface to vehicle with variable speed is an important factor
in the impact factors studies.
Since structural dynamic performance of bridges depends on

parameters like stiffness, damping and boundary condition etc. it
is necessary to study the effects of stationary and non-stationary
random inputs on different bridge types. This papermainly focuses
on the beambridge types, the other bridge typeswill be studied in a
future paper. To study the dynamic performance of different beam
bridge types, two typical beam bridge models were introduced by
Zhu and Law [2] and Dugush and Eisenberger [44]: a three-span
stepped beam with equal spans and a three-span continuous non-
uniformbridge deck. For this reason, those twobridgemodelswere
also studied and will be discussed next.
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Fig. 6. Effect of different type of random inputs on the mid-span deflection of the beam under different coefficients of road surface: (a) Road roughness= Average (b) Road
roughness= Poor.
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Table 2
Comparison of impact factors under the two different random inputs with good road surface roughness sq(n0) = 16× 10−6 (m3/cycle).

Coefficients of road surface roughness sq(n0) = 16× 10−6 (m3/cycle)
Initial speed (m/s) 5 10 15
Acceleration (m/s2) 2 4 6 2 4 6 2 4 6

Impact factors Stationary random inputs 0.053 0.084 0.173 0.086 0.104 0.213 0.107 0.227 0.257
Non-stationary random inputs 0.067 0.105 0.188 0.109 0.123 0.243 0.225 0.248 0.336
Table 3
Comparison of impact factors under the two different random inputs with average road surface roughness sq(n0) = 64× 10−6 (m3/cycle).

Coefficients of road surface roughness sq(n0) = 64× 10−6 (m3/cycle)
Initial speed (m/s) 5 10 15
Acceleration (m/s2) 2 4 6 2 4 6 2 4 6

Impact factors Stationary random inputs 0.061 0.102 0.165 0.105 0.127 0.195 0.138 0.233 0.274
Non-stationary random inputs 0.072 0.123 0.184 0.127 0.212 0.246 0.231 0.266 0.349
Table 4
Comparison of impact factors under the two different random inputs with poor road surface roughness sq(n0) = 256× 10−6 (m3/cycle).

Coefficients of road surface roughness sq(n0) = 256× 10−6 (m3/cycle)
Initial speed (m/s) 5 10 15
Acceleration (m/s2) 2 4 6 2 4 6 2 4 6

Impact factors Stationary random inputs 0.079 0.113 0.187 0.145 0.177 0.215 0.228 0.245 0.303
Non-stationary random inputs 0.086 0.134 0.215 0.163 0.234 0.287 0.243 0.290 0.398
EI, ρA EI, ρA2EI, ρA

20.0m 20.0m 20.0m

Fig. 8. A three-span stepped beam with equal spans.

4.2. Example 2: a three-span stepped beam with equal spans

The second example shown in Fig. 8 is a three-span beam with
uniform sections at each span. The flexural stiffness of the cen-
tral span is twice that of the side span. Each span length is 20.0
m, and the density per unit length for all beams is assumed to
be ρA = 1000 kg/m. The flexural stiffness of the side span is
EI = 1.96×106 kN m2, and themode shape function for the beam
can be obtained from [44]. The solution of this problem was ob-
tainedusing the first fourmode shapes, and the natural frequencies
corresponding to thesemode shapes are 38.9, 47.6, 75.3, and 152.1
(rad/s), respectively. When the coefficient of road surface rough-
ness is sq(n0) = 256 × 10−6 (m3/cycle) and vehicular speed is
ṡ = 10 m/s, s̈ = 4 m/s2, the dynamic deflections at mid-span lo-
cations of the first and second span are shown in Fig. 9. The effect of
vehicular speeds on the impact factors of the central span is shown
in Fig. 10. It can be seen that the mid-span deflections and impact
factors of the three-span beams are also affected by the two differ-
ent random inputs. For example, for the model of stationary and
non-stationary random inputs shown in Fig. 9(a), the maximum
mid-span deflections are 0.96 (mm) and 1.25 (mm), respectively.
The results from this example indicate that different simula-

tions of the random inputs lead to different mid-span deflections
and impact factors for both first and central spans. Therefore, for
the three-span stepped beam with equal spans, the random mod-
els of the road surface inputs is a key factor to the vibration of the
vehicle–bridge system.

4.3. Example 3: a three-span continuous non-uniform bridge deck

The bridge deck in example 3 is a three-span continuous non-
uniform bridge deck as shown in Fig. 11. The modulus of elastic-
ity of the bridge is E = 3 × 1010 N/m2 and the density is ρ =
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Fig. 9. Deflections at mid-span positions of (a) the first span and (b) central span.
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Fig. 10. Impact factor of central span versus vehicular speed.

2400 kg/m3. When studying the effects of the two different mod-
els of road surface inputs on the vehicle–bridge system with vari-
able vehicular speeds, the braking is one of the important sources
of variable speeds. Yang andWu [45], Law and Zhu [27], and Ju and
Lin [28] all discussed the effect of braking on the dynamic response
of bridges. They all concluded that vehicle braking may contribute
significantly to bridge response, and that the resulting impact fac-
tors may exceed those adopted in current design codes. Therefore,
in this example, the effects of the two inputs on the impact factors
under the vehicle braking situation were studied. When the vehic-
ular initial speed is ṡ = 10 m/s, the impact factors were studied
with variations of the following parameters obtained from [27]:

(a) braking rise time 0.6, 0.3, 0.0 s;
(b) braking position of the vehicle; and
(c) different road surface roughness as specified in the Ref. [40].
Road surface roughness ranging from Good to Very Poor were
used in this study.

Fig. 12 plots the impact factors at the mid-span of the central
span against vehicle braking positions when a coefficient of road
surface roughness of sq(n0) = 256 × 10−6 (m3/cycle) was used;
when the vehicular initial speed is ṡ = 10 m/s, three different
braking rest times 0.6 s, 0.3 s and 0.0 s, and two different random
input models, i.e., stationary and non-stationary inputs were used.
It shows that the duration of braking rise time and vehicle braking
0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Vehicle breaking position as fraction of span length

Im
pa

ct
 f

ac
to

r

Fig. 12. Impact factors versus different vehicle braking position.

position have very significant effects on the maximum impact
factors. For example, the impact factors produced from a braking
time 0.6 s is approximately 0.347 while that from sharp braking
with 0.0 s is approximately 0.668 for non-stationary random inputs
when vehicle brakes at the position of 2/5L.
Table 5 shows the impact factors for different road surface

conditions when a vehicle brakes at position 2/5L with a rise
time of 0.3 s under three different vehicular initial speeds: ṡ =
5 m/s, ṡ = 10 m/s, and ṡ = 15 m/s. It can be observed that
the effect of the two different inputs on the impact factors is
significant. Using the stationary random process inputs to model
the road surface disturbance to vehicles with variable speed
will lead to underestimating impact factors in some cases and
overestimating them in the other cases. This is different from
the cases of acceleration (see Tables 2–4) where stationary inputs
always underestimate the impact factors.

5. Conclusions

This paper presented a new method for analyzing the non-
stationary random response of bridges. Using the covariance
equivalence technique, the time domain non-stationary random
responses of the vehicles wheels with variable speed were
obtained. A two-axle vehicle model was used. Three typical bridge
models were analyzed: a single-span uniform Bernoulli–Euler
beam, a three-span stepped beam and a three-span continuous
non-uniform bridge deck. The differential equations of motion of
coupled systemswere derived. The stationary random process and
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Fig. 11. A three-span continuous non-uniform bridge deck.
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Table 5
Impact factors with different road surface conditions.

Road class Good Average Poor Very Poor

ṡ = 5 m/s Non-stationary random inputs 0.068 0.187 0.356 0.558
Stationary random inputs 0.073 0.189 0.412 0.601

ṡ = 10 m/s Non-stationary random inputs 0.158 0.267 0.518 0.684
Stationary random inputs 0.167 0.286 0.547 0.723

ṡ = 15 m/s Non-stationary random inputs 0.298 0.397 0.656 0.989
Stationary random inputs 0.330 0.441 0.766 1.219
the non-stationary response of tires are respectively treated as the
inputs of the bridge–vehicle coupled system. The comparison of
the effect of the two inputs on the mid-span deflection and the
impact factorswere comparedwith different parameters including
the coefficient of surface roughness, vehicle acceleration, and
vehicle braking. Numerical results indicate that: (1) the amplitude
of non-stationary random responses of the wheels increases as
the vehicle velocity increases, and decreases with the decreases
in vehicle velocity; (2) if taking the stationary random process to
model the road surface disturbance to vehicle with variable speed,
it may either underestimate or overestimate the dynamic effects;
(3) factors such as different road surface roughness coefficients,
initial vehicular speeds, vehicle accelerations, and vehicle braking
conditions have very significant influence on the impact factors
under both stationary and non-stationary random inputs.
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