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Vehicle axle identification using wavelet
analysis of bridge global responses

Yang Yu1, CS Cai1 and Lu Deng2

Abstract

Bridge weigh-in-motion (BWIM) technique uses an instrumented bridge as a weighing scale to estimate vehicle weights.

Traditional BWIM systems use axle detectors placed on the road surface to identify vehicle axles. However, the axle

detectors have poor durability due to the direct exposure to the traffic. To resolve this issue, a free-of-axle-detector

(FAD) algorithm, which eliminates the use of axle detectors, was proposed. As a further improvement to simplify the

BWIM systems, the concept of nothing-on-road (NOR) BWIM was recently introduced. The axle identification method

proposed in this paper is an attempt to achieve the NOR BWIM, i.e., using bridge global responses to identify vehicle

axles. Wavelet analysis is applied to extract the axle information from the global responses. This allows the BWIM

technique to be achieved with only weighing sensors. Numerical simulations are conducted using three-dimensional

vehicle and bridge models and the effect of several parameters, including sampling frequency, road surface condition and

measurement noise on the identification accuracy is investigated. The results demonstrate that the proposed identifi-

cation method using wavelet analysis can accurately identify vehicle axles, except for cases where the road surface

condition is rough or measurement noises exceed certain levels.
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1. Introduction

Bridge weigh-in-motion (BWIM) is a recently devel-
oped technology that aims at identifying vehicle
weights using an instrumented bridge as the weighing
scale. Compared to the traditional pavement-based
WIM techniques, the BWIM technique has several
advantages: (1) a BWIM system is more durable than
a pavement-based WIM system since most sensors are
not directly exposed to traffic; (2) the installation of a
BWIM system is easy and safe as it can be done without
interrupting the traffic and (3) a BWIM system is poten-
tially more accurate than a pavement-based WIM
system since it records the complete time history of
the bridge response (O’Brien et al., 1999). These advan-
tages have made the BWIM systems a cost-effective
alternative to the pavement-based WIM systems and
a potential tool for truck overweight enforcement.

Axle detection is an indispensable part of the BWIM
systems. In traditional BWIM systems, the sensors can
be classified into two types, i.e., the weighing sensors
and axle detectors. The weighing sensors measure the
bridge global responses, usually in terms of bending

strains, due to the vehicle loading and thus they are
usually installed at locations of most pronounced
responses, e.g., the mid-span of the bridge. Axle detec-
tors are typically placed on the road surface to identify
the vehicle speed and axle spacing which are then used
as inputs to the BWIM algorithm to calculate axle
weights (Moses, 1979). While the method using axle
detectors is very accurate, the durability of the detec-
tors becomes a concern. In an effort to address this
concern, a free-of-axle-detector (FAD) algorithm was
developed in the WAVE project (WAVE, 2001). The
concept of the FAD algorithm is to replace the trad-
itional axle detectors on the road surface by placing the
FAD sensors underneath the bridge to measure the
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bridge local responses. An important feature of the
FAD sensors is that they show a sharp peak when an
axle is present above the sensor location. The applica-
tion of the FAD algorithm eliminates the use of axle
detectors that have poor durability. However, it still
requires the FAD sensors solely for the purpose of
identifying the vehicle velocity and axle spacing. Also,
the FAD algorithm is not applicable to all types of
bridges as it imposes certain restrictions, such as thin
superstructure, short span, etc (WAVE, 2001).

Recently, the concept of a nothing-on-road (NOR)
BWIM system was proposed. The goal of the NOR
BWIM is to free the use of axle detectors as well as
FAD sensors and to directly employ the strain signal
obtained from weighing sensors to identify the vehicle
speed and axle spacing. This will be a very attractive fea-
ture for commercial BWIM systems since it reduces the
number of sensors and thus the cost of the system,making
the installation even easier. However, the strain signal of
weighing sensors corresponds to the global response of
the bridge, which means that a direct identification from
the signal would be very difficult. Therefore, a proper
signal processing technique needs to be employed to
extract the axle information from the strain signal.

Wavelet analysis is a recently developed technique
that provides a powerful tool to solve many difficult
engineering problems. This exciting new method has
been applied to many fields such as signal processing,
data compression, computer graphics, etc.
Nevertheless, the study on the use of wavelet analysis
in the identification of vehicle axles has been very lim-
ited. Dunne et al. (2005) first proposed using wavelet
transformation to identify closely-spaced axles from the
FAD signals. Chatterjee et al. (2006) conducted a fur-
ther study to explore the possibility of using wavelet
transformation of the strain signal to identify the vehi-
cle axles. In their study, a numerical simulation was
carried out on a simply supported beam and field test-
ing was conducted on a short box culvert. The results
showed that wavelet analysis is able to identify the
vehicle velocity and axle spacing with a reasonable
accuracy. However, the beam model seems overly
simple to accurately represent the behavior of the
bridge. Moreover, the box culvert used in their study
is a very simple structure and it has been reported that
for these types of structures, the dynamic effect caused
by a vehicle is basically negligible (Quilligan, 2003).
Besides, in their field test, the obtained strain signals
already have relatively sharp peaks corresponding to
some axles due to the fact that the instrumented super-
structure is very thin. Thus, the identification was actu-
ally achieved through the wavelet analysis of bridge
local responses rather than the global responses.

The objective of this paper is to employ the wavelet
technique to identify vehicle axles from the signals of

weighing sensors, i.e., the bridge global responses,
which give no direct information with respect to the
vehicle axles. A brief introduction on the wavelet
theory is first given. Numerical simulations are then
carried out on a multi-girder bridge with differ-
ent trucks traveling at different speeds and a continu-
ous wavelet transformation is then used to extract the
information of vehicle axles from the bridge glo-
bal responses. A parametric study is finally conducted
to investigate the effect of several parameters
including the sampling frequency, road surface condi-
tion and measurement noise on the identification
accuracy.

2. Wavelet theory

Fourier analysis allows the frequency information
being extracted from the signal presented in the time
domain. However, the time information is lost during
the Fourier transformation (FT), i.e., it gives no infor-
mation on the time occurrence of certain frequency
components of the signal. In this sense, Fourier analysis
is only suitable for stationary signals or cases where the
time information is not of interest. To overcome this
drawback, short-time Fourier analysis (STFT) was pro-
posed (Gabor, 1946). The idea of the STFT is to divide
the signal into many intervals and the signal in each
small interval is assumed to be stationary. In this
case, FT can be carried out at each time interval and
a time-frequency representation of the signal can be
obtained. However, the STFT is still not the per-
fect solution to analyze non-stationary signals since it
has a fixed resolution, i.e., a satisfactory resolution
with respect to both time and frequency cannot be
achieved at the same time. Wavelet transformation
was then developed on this basis to provide a multi-
resolution analysis of the signal. The purpose of the
wavelet transformation is to expand the signal in
terms of wavelets which are generated from the trans-
formations, including dilations and translations, of the
wavelet function, i.e., a compactly supported function
that is also known as the mother wavelet. An important
feature of the wavelet transformation is that the width
of the window can be changed to adapt to different
frequency components of the signal. Therefore, wavelet
analysis is very effective in analyzing non-stationary
signals.

The continuous wavelet transformation (CWT) of a
signal is defined as:

W ða, bÞ ¼
1ffiffiffi
a
p

Z 1
�1

sðtÞ 
t� b

a

� �
dt ð1Þ

where a is the scaling factor; b is the shifting factor; sðtÞ
is the signal as a function of time; and  ðtÞ is the
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so-called mother wavelet that must satisfy the following
criterion:

Z 1
�1

 
^

ð!Þ

����
����2

!j j
d!51 ð2Þ

where  
^

ð!Þ is the Fourier transformation of  ðtÞ. This
is known as the admissibility condition which implies
 
^

ð0Þ ¼ 0. If we define  a,bðtÞ as:

 a,bðtÞ ¼
1ffiffiffi
a
p  

t� b

a

� �
ð3Þ

then equation (1) can be rewritten as the inner product
of the signal sðtÞ and  a,bðtÞ as:

W ða, bÞ ¼

Z 1
�1

sðtÞ a,bðtÞdt ð4Þ

In terms of the application in the identification of vehi-
cle axles, the presence or absence of a vehicle axle will
cause a sudden change of the slope of the strain signal.
While this abrupt change is very difficult to directly
observe, a wavelet analysis may be able to amplify
these slope discontinuities in the form of sharp peaks
in the transformed signal. In the present study, the
Morlet wavelet is used to conduct the CWT after com-
paring the performance with several alternatives such
as the reverse biorthogonal wavelets and Daubechies
wavelets. The Morlet wavelet can be considered as a
modulated Gaussian wave formation. It has a good
locality property in both the time and frequency
domains. Technically, the Morlet wavelet is complex-
valued. However, in many applications, only the real
part is used. The complex version is more well-known
as the Gabor wavelet. A figure representation of the
Morlet wavelet used in this study is shown in Figure
1 and the wavelet function is given as:

 ðtÞ ¼ e�
t2

2 cosð5tÞ ð5Þ

3. Numerical simulations

3.1. Bridge model

In the present study, a simply-supported multi-girder
concrete bridge was adopted for the simulation. As a
good representative of highway bridges, the selected
bridge was designed according to AASHTO standard
specification (AASHTO, 2002) and the bridge span
length is 24.38 meters (80 ft). The bridge has a uniform
cross-section consisting of five identical I-girders and

three diaphragms located at the two ends and middle.
The cross-section of the bridge is shown in Figure 2.
The bridge was modeled with the ANSYS software
using solid elements (with three translational degrees-
of-freedom at each node) to predict the fundamental
dynamic characteristics including the natural frequen-
cies and mode shapes. Figure 3 shows the finite element
model of the bridge. The fundamental frequency of the
bridge was found to be 3.46Hz.

Figure 1. The Morlet wavelet.

Figure 2. Cross-section of the bridge.

Figure 3. Finite element model of the bridge.
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3.2. Vehicle Model

In this study, four typical highway trucks with different
axle configurations as listed in Table 1 were employed.
In the numerical simulation, the truck was modeled
using spring-dashpot systems. The vehicle bodies (trac-
tor and trailer) were represented by rigid bodies with
mass and three DOFs, i.e., the vertical displacement,
pitching rotation, and rolling rotation. The connection
between the tractor and trailer is modeled as a pinned
connection, i.e., the tractor and trailer have equal ver-
tical displacement at the connection. Each wheel was
represented by a lumped mass with one DOF, i.e., the
vertical displacement. An analytical model of Truck 2 is
shown in Figure 4.

3.3. Vehicle-bridge Interaction

The interaction between the bridge and vehicle can be
solved by either an iterative procedure (Broquet et al.,
2004) or a coupled approach (Deng and Cai, 2010). In
this study, the coupled approach was used. The equa-
tions of motion for the vehicle and bridge can be writ-
ten in matrix forms as:

Mv½ �
€dv

n o
þ Cv½ �

_dv

n o
þ Kv½ � dvf g ¼ FGf g þ Fvf g ð6Þ

Mb½ � €db

n o
þ Cb½ �

_db

n o
þ Kb½ � dbf g ¼ Fbf g ð7Þ

where Mv½ �, Cv½ �, and Kv½ �¼ the mass, damping, and
stiffness matrices of the vehicle, respectively; Mb½ �,
Cb½ �, and Kb½ �¼ the mass, damping, and stiffness matri-
ces of the bridge, respectively; dvf g and dbf g¼ the
displacement vector of the vehicle and bridge, respect-
ively; FGf g¼ the gravity force vector of the vehicle; and
Fvf g and Fbf g¼ the wheel-road contact force vectors
acting on the vehicle and bridge, respectively, and
they can be expressed as:

fFbg ¼ �fFvg ¼ ½Kl �f�lg þ ½Cl �f _�lg ð8Þ

where Kl½ � and Cl½ �¼ coefficients of the vehicle lower
spring and damper, respectively; �l is the deformation
of the lower spring of the vehicle which can be obtained
from the displacement relationship:

Za ¼ Zb þ�l þ rðxÞ ð9Þ

where Za is the vehicle axle suspension displacement;
Zb is displacement of the bridge at the wheel-road con-
tact point; and r(x) is the road surface elevation as a
function of the vehicle position.

Based on the interaction force relationship and dis-
placement relationship at the contact points, namely,
equation (8) and equation (9), the two equations of
motion for the vehicle and bridge can be combined
into one coupled equation:

Mb

Mv

� � €db
€dv

( )
þ

Cb þ Cb�b Cb�v

Cv�b Cv

� � _db
_dv

( )

þ
Kb þ Kb�b Kb�v

Kv�b Kv

� �
db

dv

� 	
¼

Fb�r

Fv�r þ FG

� 	 ð10Þ

where Cb�b, Cb�v, Cv�b, Kb�b, Kb�v, Kv�b, Fb�r, and
Fb�r are the interaction terms caused by the contact

Table 1. Axle configurations of truck models.

Truck

Number

Number

of axles

Axle spacing

First to

second (m)

Second to

third (m)

Third to

fourth (m)

Fourth

to fifth (m)

1 2 6.25 N.A. N.A. N.A.

2 3 4.27 4.27 N.A. N.A.

3 3 4.94 1.40 N.A. N.A.

4 5 8.00 5.00 2.00 5.00

Figure 4. Analytical model of Truck 2. (a) Back view and (b) Side view.
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forces. As the vehicle moves across the bridge, the pos-
itions of contact points change and so do the contact
forces. Thus, the interaction terms are time-dependent
terms and will change as the vehicle moves across the
bridge.

In order to reduce the size of the matrices and save
calculation efforts, the modal superposition technique
was adopted and the bridge displacement vector dbf g in
equation (10) can therefore be expressed as:

dbf g ¼ �1f g �2f g . . . �mf g

 �

�1 �2 � � ��m
� T

¼ �b½ � �bf g

ð11Þ

where m¼ the total number of modes considered for
the bridge; �if g and �i¼ the ith mode shape of the
bridge and the ith generalized modal coordinate,
respectively. If each mode shape is normalized such
that �if g

T Mb½ � �if g ¼ 1 and �if g
T Kb½ � �if g ¼ !

2
i and

the damping matrix Cb½ � in equation (7) is assumed to
be equal to 2!i�i Mb½ �, where !i and �i¼ the natural
circular frequency and the percentage of the critical
damping of the ith mode of the bridge, respectively,
then equation (10) can be simplified as:

I

Mv

� �
€�b
€dv

( )
þ

2!i�iIþ�T
bCb�b�b �T

bCb�v

Cv�b�b Cv

� �
_�b
_dv

( )

þ
!2
i Iþ�T

bKb�b�b �T
bKb�v

Kv�b�b Kv

� �
�b

dv

� 	
¼

�T
b Fb�r

Fv�r þFG

� 	
ð12Þ

The coupled equation (12) contains only the modal
properties of the bridge and the mechanical parameters
of the vehicles. As a result, the complexity of solving
the coupled equations was significantly reduced. A
computer program was developed in the MATLAB
environment to solve equation (12) in the time
domain using the fourth-order Runge-Kutta method.
After obtaining the displacement responses of the
bridge fdbg, the strain responses can be obtained
through:

f"g ¼ ½B�fdbg ð13Þ

where ½B�¼ the strain-displacement relationship matrix
assembled with the x, y, and z derivatives of the element
shape functions. The ½B� matrix depends on the type of
finite elements employed and can be derived following
the standard finite element formulation procedure.

3.4. Simulation results

In the numerical simulation, each of the four highway
trucks are set to cross the bridge at three constant

speeds, i.e., 10m/s, 20m/s and 30m/s in lane 2 and
Figure 5 shows the transverse position of the vehicle
on the bridge. In a commercial BWIM system, five
weighing sensors would be installed underneath the
five girders at the mid-span to measure the global
responses of the bridge, i.e., longitudinal strain
responses, and at least four FAD sensors (two for
each lane) would be installed underneath the bridge
slab to identify the vehicle axles. In this study, as an
attempt to achieve the NOR BWIM without FAD sen-
sors, the strain signal of the weighing sensor installed
on the girder directly beneath the vehicle trajectory, i.e.,
Girder 4, is used for the axle identification.

Figure 6 shows the typical time histories of the strain
response of Girder 4 corresponding to Trucks 2 and 4
traveling at 20m/s and 10m/s under a smooth road
surface, respectively. A sampling frequency of 200 Hz
is used. From the strain response histories, it can be
seen that there is no obvious information on the pres-
ence of vehicle axles. This is understandable since the
longitudinal strain responses of girders are the global
responses of the bridge and they are not sensitive to the
presence of axle loads. Nevertheless, as discussed
before, the details of the original strain signals still con-
tain the information of vehicle axles. Therefore, a CWT
is conducted on the strain signals and the results are
presented in Figure 6. The plotted wavelet coefficients
are chosen at the scale of 14. As can be seen, the trans-
formed signals have several pronounced peaks. These
sharp peaks correspond to vehicle axles entering or
exiting the bridge. For the three-axle truck, i.e., Truck
2, the first three peaks correspond to the three axles
entering the bridge and the last three peaks correspond
to the three axles exiting the bridge. Again, the same
feature was also observed for the transformed signal for
Truck 4, i.e., the five-axle truck.

Since the span length of the bridge is already known,
the vehicle speed can be calculated from the time dif-
ference between each vehicle axle entering and exiting
the bridge. Once the vehicle speed is known, the time
difference between vehicle axles can be used to obtain
the axle spacing of the truck. For the signals shown in
Figure 6, the velocity and two axle spacings of Truck 2
were calculated as 19.85m/s, 4.22m and 4.27m,
respectively, and the velocity and four axle spacings

Figure 5. Transverse position of the vehicle on the bridge.
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of Truck 4 were calculated as 9.92m/s, 7.96m, 4.94m,
1.99m and 4.94m, respectively. Compared to the true
values given in Table 1, the identified results are found
to be very accurate.

The identification results for all considered cases are
tabulated in Table 2. To better examine the accuracy of
identification, the identification error is defined as:

Identification Error ¼
Piden � Ptrue

Ptrue

����
����� 100% ð14Þ

where Piden and Ptrue are the identified parameter and
the true parameter, respectively. Using this definition,
the identification errors were calculated and the results
are given in Table 3.

From Table 3, it can be seen that a satisfactory
accuracy was achieved with most errors well below
two percent. However, it was found that there are

several cases with large identification errors and that
these large errors seem to occur at high vehicle
speeds. For example, for Truck 3 traveling at 30m/s,
the maximum error of axle spacing reaches 97.1 per-
cent, indicating a failure of identification. The reason
for these large errors is that some high-frequency infor-
mation of the signal is lost due to the relatively low
sampling frequency as the vehicle travels at a high
speed. It will be shown in the next section that once
the sampling frequency is increased, these errors will
considerably decrease.

The successful axle identification using bridge global
responses has significant implications since the vehicle
speed and axle spacing can be identified using only the
weighing sensors. In the real application, the use of this
advanced axle detection technique will reduce the
number of sensors to be installed and thus the cost of
BWIM systems. Furthermore, since the identification

Figure 6. Typical strain signals and corresponding wavelet transformations at scale of 14:

(a) Truck 2 (3-axle) traveling at 20 m/s and (b) Truck 4 (5-axle) traveling at 10 m/s.
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principle of this technique does not impose any restric-
tions on bridge types as in the case of FAD applica-
tions, it could potentially help extend the application of
the BWIM technology to different types of bridges.

3.5. Parametric study

3.5.1. Effect of sampling frequency. As mentioned earlier,
some large errors occurred due to the relatively low
sampling frequency. To investigate the effect of sam-
pling frequency on the identification accuracy, two
sampling frequencies, i.e., 200Hz and 500Hz, are

used to record the strain response for Truck 3 traveling
at 30m/s. Figure 7 shows the transformed signals under
the two sampling frequencies. It should be mentioned
that with the increase of sampling frequency, the scale
of wavelet coefficients used for identification is
reduced to 4.

From Figure 7, it can be clearly seen that the peaks
in the transformed signal corresponding to the sam-
pling frequency of 500 Hz are much sharper than the
one corresponding to the sampling frequency of
200Hz. As a result, the identified vehicle speed and
the two axle spacings using the sampling frequency of

Table 2. Identified results using wavelet transformation.

Truck

number

Number

of axles

Identified results

Velocity (m/s)

Axle spacing.

First to second (m)

Axle spacing.

Second to third (m)

Axle spacing.

Third to fourth (m)

Axle spacing.

Fourth to fifth (m)

1 2 9.93 6.21 N.A. N.A. N.A.

2 3 9.92 4.24 4.22 N.A. N.A.

3 3 9.93 4.86 1.42 N.A. N.A.

4 5 9.92 7.96 4.94 1.99 4.94

1 2 19.86 6.21 N.A. N.A. N.A.

2 3 19.85 4.22 4.27 N.A. N.A.

3 3 19.85 4.67 1.64 N.A. N.A.

4 5 19.89 7.96 5.07 1.94 4.92

1 2 29.92 6.28 N.A. N.A. N.A.

2 3 29.92 4.19 4.34 N.A. N.A.

3 3 29.86 6.19 2.76 N.A. N.A.

4 5 29.88 7.92 4.48 2.39 4.78

Table 3. Identification errors using wavelet transformation.

Truck

number

Number

of axles

Vehicle

speed (m/s)

Identification errors (%)

Velocity

Axle spacing.

First to second

Axle spacing.

Second to third

Axle spacing.

Third to forth

Axle spacing.

Fourth to fifth

1 2 10 0.70 0.64 N.A. N.A. N.A.

2 3 10 0.80 0.70 1.17 N.A. N.A.

3 3 10 0.70 1.62 1.43 N.A. N.A.

4 5 10 0.80 0.50 1.20 0.50 1.20

1 2 20 0.70 0.64 N.A. N.A. N.A.

2 3 20 0.75 1.17 0.00 N.A. N.A.

3 3 20 0.75 5.47 17.1 N.A. N.A.

4 5 20 0.55 0.50 1.40 3.00 1.60

1 2 30 0.27 0.48 N.A. N.A. N.A.

2 3 30 0.27 1.87 1.64 N.A. N.A.

3 3 30 0.47 25.3 97.1 N.A. N.A.

4 5 30 0.40 1.00 10.4 19.5 4.40
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500Hz changed to 30.25m/s, 4.95m and 1.42m,
respectively, and corresponding identification errors
for the two axle spacings were reduced from 25.3%
and 97.1% to 0.20% and 1.43%, respectively. For
other cases with relatively large errors, it was also
found that increasing the sampling frequency consider-
ably reduced the identification errors.

Essentially, increasing the sampling frequency shar-
pens the peaks in the transformed signal, which, in
turn, increases the accuracy of identification.
However, higher sampling frequency would also
substantially increase the amount of data and its pro-
cessing time. Therefore, an appropriate sampling fre-
quency should be determined based on the maximum
vehicle speed of interest. In addition, this example also
demonstrates that the wavelet analysis is capable of
identifying closely-spaced axles which can be diffi-
cult sometimes for the FAD techniques (Chatterjee
et al., 2006).

3.5.2. Effect of road surface condition. A road profile is
usually represented by a zero-mean stationary stochas-
tic process that can be expressed by a power spectral
density (PSD) function. In this study, a modified PSD
function (Wang and Huang, 1992) was used:

’ nð Þ ¼ ’ n0ð Þ
n

n0

� ��2
ðn1 5 n5 n2Þ ð15Þ

where n is the spatial frequency (cycle/m); n0 is the dis-
continuity frequency of 0.5p (cycle/m); ’ðn0Þ is the
roughness coefficient (m3/cycle); and n1 and n2 are the

lower and upper cut-off frequencies, respectively. The
International Organization for Standardization (ISO,
1995) classified the road surface condition into several
categories depending on different values of roughness
coefficients. In the present study, according to ISO spe-
cifications (ISO, 1995), the roughness coefficients of
5� 10� 6, 20� 10�6, 80� 10�6, and 256� 10�6 m3/
cycle were used for very good, good, average, and
poor road surface conditions, respectively.

The road surface elevation can then be generated by
an inverse Fourier transformation as:

r xð Þ ¼
XN
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2’ðnkÞ�n

p
cosð2�nkxþ �kÞ ð16Þ

where �k is the random phase angle uniformly
distributed between 0 and 2p; nk is the wave number
(cycle/m); N is the number of frequencies between n1
and n2; and �n is the frequency interval between n1
and n2.

In order to examine the effect of road surface rough-
ness on the identification accuracy, Truck 2 is set to
travel at 20m/s under four different surface conditions,
i.e., very good, good, average, and poor road surface
conditions and the sampling frequency is chosen to be
500 Hz. The wavelet transformations of the strain sig-
nals at the scale of 4 are presented in Figure 8. It can be
seen that as the road roughness increases, the peaks
used to identify the axles become less pronounced as
there appears to have many other ‘‘noise’’ peaks. These
other ‘‘noise’’ peaks are caused by the dynamic effect of

Figure 7. Wavelet transformations of signals for Truck 3 traveling at 30 m/s: (a) sampling frequency of 200 Hz and (b) sampling

frequency of 500 Hz.
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the vehicle-bridge interaction. As the road surface
condition worsens, these ‘‘noise’’ peaks become
more pronounced, making the identification more dif-
ficult. Nevertheless, under very good and good surface
conditions, the identification is still effective, as the
identification errors were calculated to be below
one percent. However, as road surface condition fur-
ther deteriorates, the identification becomes infeasible
since it is difficult to distinguish the peaks due to vehicle
axles from other ‘‘noise’’ peaks caused by the dynamic
effect.

In some previous studies on the bridge dynamic
behaviors (e.g., Calçada et al., 2005, Ashebo et al.,
2007), a low-pass filter was often employed to remove
the dynamic effect of the response. However, in the case
of axle identifications using wavelet analysis, low-pass
filtering is not a solution, since the high frequency com-
ponents of the signal contain the useful information
used to identify the vehicle axles. Namely, low-pass fil-
tering will also filter out the useful information.
Nonetheless, it should be pointed out that, a smooth
road condition is a prerequisite to achieve a satisfactory
identification accuracy for most existing BWIM tech-
nologies such as those using Moses’s algorithm (Moses,
1979, WAVE, 2001). Therefore, the fact that the axle
identification using wavelet analysis is limited to good
bridge surface conditions does not really impede the
implementation of modern commercial BWIM systems
whose basic framework is the Moses’s algorithm
(Moses, 1979). Naturally, a new methodology that
can work well under rough road surface conditions,

and at the same time can eliminate the axle detection
sensors, is very desirable.

3.5.3. Effect of measurement noise. While the presented
identified results above can be very accurate for good
road surface conditions, they are obtained in the ideal
situation. In real practice, the obtained signals are usu-
ally contaminated by measurement noises induced by
the environmental changes and electric devices used for
data acquisition. Thus, it is necessary to examine the
effect of measurement noise on the identification accur-
acy. For this purpose, different levels of Gaussian white
noise are added to the original strain signal obtained
when Truck 2 travels at 20m/s under sampling frequen-
cies of 500 Hz and 200 Hz. As mentioned before, the
scale of the wavelet coefficients for the two frequencies
are 4 and 14, respectively. Figure 9 shows the wavelet
transformations of the original signal and polluted sig-
nals under four different signal-to-noise ratios (SNR) of
100, 50, 20 and 10.

From Figure 9(a), it can be seen that under the sam-
pling frequency of 500 Hz, the peaks induced by the
vehicle axles quickly get submerged by the noise as the
noise level increases, making the identification impos-
sible. This suggests that the identification method is
sensitive to the measurement noise. The main reason
for this is that the information of vehicle axles is
reflected by very delicate changes in the original
signal. Therefore, it becomes very difficult to separate
this information from the measurement noises even
through de-noising techniques that allow the

Figure 8. Wavelet transformations of signals under different road surface conditions.
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preservation of certain features of the original signal,
such as median filter and wavelet de-noising.

Nevertheless, it was also noticed fromFigure 9(b) that
as the sampling frequency decreases to 200Hz, the peaks
induced by the vehicle axles tend to get submerged more
slowly than the previous case, i.e., the identification
becomes less susceptible to the noise under a lower sam-
pling frequency. This is because while the scale of the

noise remains the same, the scale of the peaks increased
due to the lower sampling frequency. From this perspec-
tive, increasing the sampling frequency, though it shar-
pens the peaks induced by the vehicle axles, it does not
necessarily increase the identification accuracy.
Therefore, the choice of an optimal sampling frequency
should take into consideration the maximum vehicle
speed of interest as well as the level of noise.

Figure 9. Wavelet transformations of signals under different levels of noise: (a) sampling frequency of 500 Hz and (b) sampling

frequency of 200 Hz.

10 Journal of Vibration and Control

 by guest on December 27, 2015jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com/


4. Concluding remarks

This paper presents a vehicle axle identification method
using bridge global responses. The identification is
achieved using a continuous wavelet transformation.
Numerical simulations were conducted using three-
dimensional vehicle and bridge models and the effect
of several parameters including sampling frequency,
road surface condition and measurement noise on the
identification accuracy were investigated and discussed.
Based on the results obtained, the following conclu-
sions can be drawn:

1. Vehicle axle identifications can be achieved through a
wavelet analysis of bridge global responses. This
approach has obvious advantages over existing axle
identificationmethods in that it requires fewer sensors
and it does not impose any additional restrictions on
the basis of the Moses’s algorithm (Moses, 1979).

2. The sampling frequency of the data acquisition
system has significant influence on the identification
accuracy. A higher sampling frequency leads to shar-
per peaks in the transformed signal, which in turn,
increases the identification accuracy, especially in
cases where vehicles travel at relatively higher
speeds.

3. Road surface condition also affects the accuracy of
the axle identification in that road surface roughness
causes additional peaks in the transformed signal
due to the vehicle-bridge interaction, and once
these peaks overcome the peaks induced by the vehi-
cle axles, the identification of vehicle axles becomes
very difficult.

4. The proposed identification method is susceptible
to measurement noises. This is inevitable since the
information on vehicle axles is reflected by very
delicate changes in the original signal.
Nevertheless, it has been shown that reducing the
sampling frequency increases the scale of the peaks
induced by the vehicle axles and thus makes the
identification less susceptible to the measurement
noise.

While the proposed method in this paper provides a
promising tool for the axle identification of BWIM sys-
tems, limitations and conditions are also recognized
and noted. Future work will be conducted to experi-
mentally verify this method and relevant algorithms
will be designed to enable automatic identification of
vehicle axles in the BWIM systems.
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