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Abstract: Amethod for predicting the bounds of vehicle-induced bridge responses with uncertain bridge and vehicle parameters is presented.
The uncertainties in the parameters of the bridge and vehicle are represented with interval variables instead of conventional random variables
with known probability distributions. First, a three-dimensional vehicle–bridge interaction (VBI) system, which has no closed-form solution
and can account for road roughness, is established. Then, by introducing the interval analysis method (IAM) based on the first-order Taylor se-
ries expansion, the expressions of the bridge responses, including displacement and bending moment at the midspan, can be explicitly given as
functions of the interval parameters, and the lower and upper bounds of the bridge responses are determined by the particle swarm algorithm
instead of direct interval arithmetic to avoid excessive overestimation of the responses. The subinterval technique can also be adopted to
improve the accuracy of the IAM. A numerical example is provided, and the results show that, compared with the conventional Monte Carlo
method, the proposed IAM is capable of obtaining the bounds of the bridge deflection and bending moment without much sacrifice of accuracy
while requiringmuch less computational effort. This indicates that the proposed method can be effectively and efficiently applied to predicting
the bounds of the dynamic responses of complicated VBI systems with interval uncertainties. An example is also used to demonstrate the
applicability of the IAM to field bridges when only limited information about the bridge and vehicle is available. DOI: 10.1061/(ASCE)
BE.1943-5592.0000911.© 2016 American Society of Civil Engineers.
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Introduction

Vehicle-induced bridge responses have been extensively studied by
many researchers. Among the numerical models developed to simu-
late the behavior of the vehicle–bridge interaction (VBI) system,
deterministic parameters of vehicles and bridges are usually
assumed, and the variation in parameters is usually considered by
setting a series of predefined values within certain ranges, and deter-
ministic analysis is then conducted with a combination of parame-
ters with different values (Deng and Cai 2010; Ding et al. 2009;
Huang et al. 1993; Liu et al. 2013). However, in real practice, both
the bridge and vehicle are subject to various uncertainties that are
usually difficult to predict. Therefore, such deterministic analysis
with finite discrete values of parameters may not represent the non-
deterministic characteristics of the parameters of the VBI system.
Accurate prediction of vehicle-induced bridge responses requires
reasonable consideration of these uncertainties.

There are three main approaches to modeling those uncertain-
ties: probabilistic theory, fuzzy set, and interval analysis (Ma et al.

2013; Xia and Yu 2014). The probabilistic theory treats the uncer-
tain parameters as random variables with known probability distri-
butions, and has been widely applied to the study of VBI problems
and other engineering problems (González et al. 2008; OBrien et al.
2010). Because of the requirement for obtaining sufficient statistical
data to construct reliable probabilistic density functions of uncertain
parameters, the probabilistic method may have poor performance in
certain circumstances where valid data are sparse or lacking and the
uncertain parameters are not random in nature (Ma et al. 2014;
Sankararaman andMahadevan 2011; Xia and Yu 2014).

The nonprobabilistic uncertainty, which results from the lack of
knowledge and intrinsic drawbacks with the classical probabilistic
methods, can be handled by two other approaches: the fuzzy set and
interval analysis (Ma et al. 2013; Xia and Yu 2014). Xia and Yu
(2014) pointed out that fuzzy analysis can be replaced by interval
analysis using the a-level technique. Thus, interval analysis is the
core method to model nonprobabilistic uncertainties. In interval
analysis, the uncertain input parameters of the system are expressed
as closed-bound intervals, and the goal of interval analysis is to
obtain the bounds of the system responses through interval compu-
tations instead of Monte Carlo simulation, which requires excessive
computational effort. Recent years have seen some applications of
interval methods in engineering problems (Ma et al. 2013; Xia and
Yu 2012; Zhang et al. 2010). The interval analysis method (IAM)
was first introduced to the dynamic analysis of VBI systems by Liu
et al. (2013). In their study, the simple VBI system consisted of a
half-car model and a planar simply supported beam model, and the
vehicle masses and the density, Young’s modulus, and moment of
inertia of the bridge were chosen as interval parameters. The lower
and upper bounds of the bridge midspan deflection were obtained
by the IAM. However, the application of their method to the study
of VBI problems is limited in that their model is incapable of con-
sidering the VBI and the effect of road roughness. In fact, because
of this limitation, the half-car model used in their study actually
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degenerates into a couple of moving forces with constant
magnitude.

This study presents an interval analysis method that can be used
for the dynamic analysis of complex VBI systems with nonproba-
bilistic uncertainties. This method can deal with practical situations
more accurately and efficiently than the traditional probabilistic
methods when only limited information about the bridge and vehi-
cle is available, and has the potential to provide a supplemental tool
in bridge assessment.

The paper is organized as follows. First, a three-dimensional
VBI model is established, and the equation of motion of the VBI
model is introduced. Then, an IAM is developed to obtain the
expressions of the bridge displacement and bending moment in the
time domain based on the first-order Taylor series expansion, and
the bounds of bridge responses are found by an optimization
approach. Meanwhile, the subinterval technique is also adopted to
improve the accuracy of the IAM. The dynamic analysis of a VBI
system consisting of a bridge modeled by the grillage method and a
5-axle semitrailer truck under good-class road roughness conditions
is used as an example for the illustration of this method. The Monte
Carlo method (MCM) is also implemented to verify the effective-
ness and efficiency of the proposed method, and the results obtained
by two methods are compared and discussed. A field bridge exam-
ple is also provided to illustrate the applicability of the IAM to prac-
tical problems when information about the bridge and vehicle pa-
rameters is limited.

VBI System

In the VBI system, the bridge model is created using the grillage
method, by which the entire bridge is modeled by longitudinal and
transverse Euler–Bernoulli beam elements. Each node of the space
beam elements has six degrees of freedom (DOFs), including three
translational and three rotational DOFs (Han et al. 2015). A typical
simply supported multigirder bridge modeled by the grillage
method is given in Fig. 1. It should be pointed out that the IAM pre-
sented here is not limited to grillage models only. The grillage

Fig. 1. Typical bridge modeled by the grillage method

Fig. 2. Typical 5-axle vehicle model (meters) (adapted fromOBrien et al. 2010): (a) side view; (b) Section A–A

Fig. 3. Good-class parallel road roughness profiles: (a) roughness; (b)
one-sided PSD
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model was adopted in this study to reduce the computational effort
required by theMCM, which usually requires a large number of cal-
culation times. To draw a fair comparison between the IAM and the
MCM, the grillagemodel was therefore adopted here.

The vehicle is modeled with a three-dimensional spring–damper–
mass system, where the vehicle bodies and axles are represented
by rigid bodies with masses, and all components are connected
by springs and dampers. This vehicle model can simulate the
VBI more realistically while maintaining an acceptable level of
complexity, and is widely used in most studies (Deng and Cai
2010; Huang et al. 1993; OBrien et al. 2010). Fig. 2 depicts a
typical 5-axle semitrailer vehicle model used by OBrien et al.
(2010).

The road surface roughness is generated as a zero-mean station-
ary Gaussian process based on a power spectral density (PSD) func-
tion (Dodds and Robson 1973). In this study, the correlation of the
roughness profiles in the transverse direction was also taken into
account based on the semianalytical coherency function proposed
byOliva et al. (2013). An example of two parallel good-class rough-
ness profiles and their PSD us shown in Fig. 3.

Using the displacement relationship and the interaction force
relationship at the contact points, the vehicle–bridge coupled sys-
tem can be established by combining the equations of motion of
both the bridge and vehicle, shown as follows:

Mb

Mv

� �
€db
€dv

� �
þ Cb þ Cb�b Cb�v

Cv�b Cv

� �
_db
_dv

� �

þ Kb þ Kb�b Kb�v

Kv�b Kv

� �
db
dv

� �
¼ Fb�r

Fv�r þ FG
v

� �
(1)

where the subscriptsb, v, and r=bridge, vehicle, and road roughness,
respectively; fdbg, f _dbg, and f€dbg = displacement, velocity, and
accelerationvectors of thebridge, respectively;fdvg,f _dvg, andf€dvg=
displacement, velocity, and acceleration vectors of the vehicle, respec-
tively; ½Mb�, ½Cb�, and ½Kb� =mass, damping, and stiffness matrices of
thebridge, respectively; ½Mv�, ½Cv�, and ½Kv�=mass, damping, andstiff-
ness matrices of the vehicle, respectively; fFvGg = vector of gravity
force of the vehicle; and Cb�b, Cb�v, Cv�b, Kb�b, Kb�v, Kv�b, Fb�r,
andFv�r are a result of thewheel–roadcontact forces.

When a vehicle moves across the bridge, the positions of the
contact points as well as the values of the contact forces change,
indicating that the damping and stiffness matrices and force vector
of the VBI system in Eq. (1) are time-dependent and will change
with the position of the vehicle on the bridge. These terms are calcu-
lated once the vehicle position on the bridge is determined and are
updated at each time step. The equation of motion of the VBI sys-
tem is solved in the time domain using the Newmark–b method.
For more details about the equation of motion of the VBI system
and its validation, readers can refer to Deng and Cai (2010).

IAM for the Dynamic Analysis of VBI System

Because bridge deflection and bending moment are two of the most
important parameters that are widely used in bridge design and
evaluation (Au et al. 2001; Deng et al. 2015), the IAM focuses on
obtaining the lower and upper bounds of these two responses with
the consideration of uncertainties inherent within the VBI system.

From Eq. (1), the general form of the equation of motion of the
VBI system with interval parameters can be written as follows:

Fig. 5. Flowchart of IAM

Fig. 4. DOFs of a beam in grillage model in the x–z plane
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M ðaIÞ€dðaI ; tÞþCðaI ; tÞ _dðaI ; tÞþKðaI ; tÞd ðaI ; tÞ¼FðaI ; tÞ (2)

whereMðaIÞ, CðaI ; tÞ, KðaI ; tÞ, and FðaI ; tÞ = interval mass, damp-
ing, stiffness matrices, and force vector, respectively; dðaI ; tÞ,
_dðaI ; tÞ, and €dðaI ; tÞ=displacement, velocity, and acceleration inter-
val vectors, respectively; and aI = n-dimensional interval parameter
vector belonging to anuncertain-but-bounded interval vector

aI ¼ ½a; a� ¼ ðaIi Þ; aIi ¼ ½ai ; ai �; i ¼ 1; 2;…; n (3)

where a and a = lower and upper bounds of the interval parameter
vector a, respectively; and ai and ai = lower and upper bounds of
the interval parameter ai, respectively.

The interval parameter aI in Eq. (3) can also be expressed as

aI ¼ ac þ DaI ¼ ac þ Daλ (4)

where

ac ¼ a þ a
2

; DaI ¼ ½�Da; Da� ¼ Daλ; λ 2 ½�1; 1�; Da ¼ a � a
2
(5)

where ac, Da, and DaI = midpoint value, interval width, and uncer-
tain interval of the interval parameter aI , respectively.

The uncertainty level of aIi is described as

h i ¼
Dai
aci

(6)

Based on the first-order Taylor series expansion around the mid-
point values of the interval parameters, the interval dynamic
response of the system in Eq. (2) can be written as

Fig. 6. Bridge cross section and loading case

Table 1. Interval Parameters of Bridge and Vehicle and Their Midpoint Values

Parameter No. Description of parameter Midpoint value

Bridge parameter a1 Young’s modulus of the girder (Pa) 3.450� 1010

a2 Young’s modulus of the diaphragm and deck (Pa) 2.470� 1010

a3 Mass of exterior girder (N/m) 1.896� 104

a4 Mass of interior girder (N/m) 1.431� 104

a5 Mass of intermediate diaphragm (N/m) 3.029� 103

a6 Mass of diaphragm at ends (N/m) 1.664� 103

a7 Torsional moment of inertia of girder (m4) 6.650� 10−3

a8 Torsional moment of inertia of intermediate diaphragm (m4) 6.477� 10−3

a9 Torsional moment of inertia of diaphragm at ends (m4) 2.876� 10−3

a10 Bending moment of inertia of girder (m4) 4.012� 10−2

a11 Bending moment of inertia of intermediate diaphragm (m4) 9.740� 10−3

a12 Bending moment of inertia of diaphragm at ends (m4) 4.750� 10−3

Vehicle parameter a13 Tractor sprung mass (kg) 7� 103

a14 Trailer sprung mass (kg) 3.877� 104

a15 Pitch moment of inertia of tractor body (kg·m2) 4.604� 103

a16 Pitch moment of inertia of trailer body (kg·m2) 1.630� 104

a17 Tractor steer axle mass (kg) 7� 102

a18 Tractor rear axle mass (kg) 1� 103

a19 Trailer tridem axle mass (individual) (kg) 8� 102

a20 Tractor steer suspension stiffness (N/m) 3� 105

a21 Tractor rear suspension stiffness (N/m) 5� 105

a22 Trailer tridem suspension stiffness (individual) (N/m) 4� 105

a23 Tire stiffness (N/m) 7.500� 105

a24 Suspension damping (N·s/m) 5� 103

a25 Tire damping (N·s/m) 3� 103

a26 Suspension offset of steer and trailer axles (m) 1� 10−1

a27 Suspension offset of rear axle (m) 5� 10−1
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€dðaI ; tÞ ¼ €dðac; tÞ þ
Xn
i¼1

∂€dðac; tÞ
∂aIi

ðaIi � aci Þ

_dðaI ; tÞ ¼ _dðac; tÞ þ
Xn
i¼1

∂ _dðac; tÞ
∂aIi

ðaIi � aci Þ

dðaI ; tÞ ¼ dðac; tÞ þ
Xn
i¼1

∂dðac; tÞ
∂aIi

ðaIi � aci Þ (7)

The midpoint responses dðac; tÞ, _dðac; tÞ, and €dðac; tÞ can be
obtained directly by solving the following equation:

MðacÞ€dðac; tÞþCðac; tÞ _dðac; tÞþKðac; tÞdðac; tÞ¼Fðac; tÞ (8)

whereas the partial derivative terms ∂dðac; tÞ=∂aIi , ∂ _dðac; tÞ=∂aIi ,
and ∂€dðac; tÞ=∂aIi can be obtained by the following sensitivity
analysis.

Taking the first-order partial derivative of both sides of Eq. (2)
with respect to the interval parameter aIi around its midpoint value
gives the following:

MðacÞ ∂
€dðac; tÞ
∂aIi

þ Cðac; tÞ ∂
_dðac; tÞ
∂aIi

þ Kðac; tÞ ∂dða
c; tÞ

∂aIi

¼ ∂Fðac; tÞ
∂aIi

� ∂MðacÞ
∂aIi

€dðac; tÞ � ∂Cðac; tÞ
∂aIi

_dðac; tÞ

� ∂Kðac; tÞ
∂aIi

∂dðac; tÞ i ¼ 1; 2;…; n (9)

The left sides of Eqs. (8) and (9) both have similar forms. The
terms ∂MðacÞ=∂aIi , ∂Cðac; tÞ=∂aIi , ∂Kðac; tÞ=∂aIi , and ∂Fðac; tÞ=∂aIi
on the right side of Eq. (9) can be computed by numerical differen-
tiationmethods, such as the central difference method, as follows:

∂MðacÞ
∂aIi

¼ Mðac þ d aiÞ �Mðac � d aiÞ
2d ai

∂Cðac; tÞ
∂aIi

¼ Cðac þ d ai; tÞ � Cðac � d ai; tÞ
2d ai

∂Kðac; tÞ
∂aIi

¼ Kðac þ d ai; tÞ � Kðac � d ai; tÞ
2d ai

∂Fðac; tÞ
∂aIi

¼ Fðac þ d ai; tÞ � Fðac � d ai; tÞ
2d ai

i ¼ 1; 2;…; n

(10)

where d ai � Dai, d ai = small variation of the ith parameter in the
interval parameter vector aI .

By substituting dðac; tÞ, _dðac; tÞ, and €dðac; tÞ from Eq. (8) and
∂MðacÞ=∂aIi , ∂Cðac; tÞ=∂aIi , ∂Kðac; tÞ=∂aIi , and ∂Fðac; tÞ=∂aIi from
Eq. (10) into the right side of Eq. (9), Eq. (9) can also be solved
by the Newmark–b method because it possesses the general form
of the equation of motion, similar to Eq. (8). It should be noticed
that ∂Cðac; tÞ=∂aIi , ∂Kðac; tÞ=∂aIi , and ∂Fðac; tÞ=∂aIi are all time-
dependent terms.

Once the system responses and their partial derivatives at the
midpoint value of the interval parameters are obtained, accord-
ing to Eq. (7), the lower and upper bounds of displacement
response can be explicitly given as follows based on the interval
arithmetic:

dðaI ; tÞ ¼ dðac; tÞ �
Xn
i¼1

���� ∂dðac; tÞ∂aIi

����Dai
dðaI ; tÞ ¼ dðac; tÞ þ

Xn
i¼1

���� ∂dðac; tÞ∂aIi

����Dai (11)

However, it should be noted that significant overestimation may
be induced by the wrapping effect of the interval arithmetic in
Eq. (11). To address this problem, global optimization algo-
rithms, such as the particle swarm optimization (PSO), can be
used to reduce the overestimation to a great extent and obtain
tighter and more reasonable bounds (Wu et al. 2015). Therefore,
the bounds of displacement can be calculated by the following
optimization problem:

min
λ

ormax
λ

dðaI ; tÞ ¼ dðac; tÞ þ
Xn
i¼1

∂dðac; tÞ
∂aIi

Daiλi

s:t: –1 � λi � 1; i ¼ 1; 2;…; n (12)

In addition, based on the FEM, the element internal forces
resulting from structure deformation can be obtained by multi-
plying the element stiffness matrix by the displacement vector of
the corresponding DOFs. Therefore, the bending moment at the
end of the beam used in the grillage method, which correspond to
four DOFs (u1, w1, u2, and w2) as shown in Fig. 4, can be
expressed as

Fig. 7. Convergence test results of the MCM (h = 0.10): (a) deflec-
tion; (b) bending moment
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m1 ¼ � 6EIyy
l2

4EIyy
l

6EIyy
l2

2EIyy
l

� � u1

w 1

u2

w 2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ EIyy � 6
l2
u1 þ 4

l
w1 þ

6
l2
u2 þ 2

l
w2

� �
(13)

where E and Iyy = Young’s modulus and second moment of inertia
of the beam, respectively; and l = element length.

When E and Iyy are considered as interval parameters, which
are denoted as aEI and aIyy I, respectively, substituting the
Taylor series expansion of displacement in Eq. (7) into
Eq. (13) yields

m1ðaI ; tÞ ¼ ðacE þ DaIEÞðacIyy þ DaIIyyÞ � 6
l2
u1ðac; tÞ þ 4

l
w 1ðac; tÞ

�

þ 6
l2
u2ðac; tÞ þ 2

l
w2ðac; tÞ þ

Xn
i¼1

� 6
l2
∂u1ðac; tÞ

∂Iai

 

þ 4
l
∂w1ðac; tÞ

∂Iai
þ 6
l2
∂u2ðac; tÞ

∂Iai
þ 2

l
∂w2ðac; tÞ

∂Iai

!
DaIi

!
(14)

Unlike Eq. (7), where the bridge deflection is transformed into
the linear combinations of those interval parameters, Eq. (14)
involves the multiplication of several interval parameters; as a
result, the lower and upper bounds of the bending moment are not
easy to determine explicitly. Meanwhile, the partial derivatives of
displacements are influenced by aIE and aIIyy . These scenarios with
multiple occurrences of some interval parameters in the same
expression are called dependency phenomenon, which can further
lead to an extreme overestimation in the direct interval arithmetic
(Muhanna and Mullen 2001). Instead, global optimization algo-
rithms are also adopted here to find the minimum and maximum
of the bending moment. The equivalent optimization problem is
defined as follows:

min
λ

ormax
λ

m1ðλ; tÞ ¼ ðacE þ DaEλEÞðacIyy þ DaIyyλIyyÞ 
� 6
l2
u1ðac; tÞ þ 4

l
w 1ðac; tÞ þ

6
l2
u2ðac; tÞ þ 2

l
w 2ðac; tÞ

þ
Xn
i¼1

� 6
l2
∂u1ðac; tÞ

∂aIi
þ 4

l
∂w1ðac; tÞ

∂aIi
þ 6
l2
∂u2ðac; tÞ

∂aIi

 

þ 2
l
∂w2ðac; tÞ

∂aIi

!
Daiλi

!

s:t:� 1 � λi � 1; i ¼ 1; 2;…; n (15)

Fig. 8. Bounds of deflection time histories at the midspan of Girder 4 under different levels of uncertainty (vehicle speed = 20 m/s): (a) h = 0.01; (b)
h = 0.05; (c) h = 0.10; (d) h = 0.15
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A flowchart of the IAM for finding the lower and upper bounds
of the bridge displacement and bending moment in the VBI system
is shown in Fig. 5.

Because of the use of the first-order Taylor expansion, the accu-
racy of the IAM is affected by the uncertainty levels of interval pa-
rameters. Large uncertainty levels may lead to unacceptable overes-
timation of the bounds of the target bridge responses. Therefore, the
subinterval technique can be adopted to refine the results of the
IAMwhen necessary (Xia and Yu 2014).

For the interval parameter aIi (i = 1, 2,…, n), the original interval
2Dai can be further divided into a series of uniform subintervals,
which can be defined as

aIsi ¼ aIi þ 2ðs� 1ÞDai=Li; aIi þ 2sDai=Li
	 


;

s ¼ 1; 2;…; Li (16)

where Li = number of subintervals of aIi ; and a
I
si = sith subinterval of

the ith interval parameter aIi .
The uncertainty level of aIsi is obviously less than that of the orig-

inal aIi , thus the accuracy of the IAM can be improved. Meanwhile,
choosing one subinterval from each interval parameter results in a
total of L1 � L2�;…; �Ln combinations of subintervals, which also

means that the aforementioned interval analysis procedure needs to
be carried out L1 � L2�;…; �Ln times, and the bounds yielded by each
interval analysis should be merged through the interval union opera-
tion to yield the global bounds (Xia and Yu 2014). Apparently, more
subintervals will lead to more accurate final bounds, while requiring
more computational effort at the same time. Therefore, to achieve

Fig. 9. Contribution of each interval parameter to the interval width of
the maximum deflection (vehicle speed = 20 m/s): (a) bridge’s parame-
ters; (b) vehicle’s parameters

Fig. 10. Bounds of maximum deflection of Girder 4 at midspan with
different vehicle speeds: (a) v = 10m/s; (b) v = 20m/s; (c) v = 30m/s
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good balance between the accuracy and the computational effort, it
is desirable to select those parameters that have significant impacts
on the bounds, instead of all parameters, to implement the subin-
terval technique and set a suitable number of subintervals for the
parameters.

Numerical Example

To illustrate the proposed method, a typical two-lane simply-sup-
ported slab-on-girder concrete bridge, designed in accordance with
the AASHTO specification (AASHTO 2002), was selected in the

present study. The bridge consists of five identical AASHTO Type-
III girders with a girder spacing of 2.13 m. It has a span length of
12.19 m, roadway width of 9.75 m, and bridge deck thickness of
0.2 m. Diaphragms are placed at both span ends and the midspan
of the bridge. Each girder is divided into 18 beam elements in the
longitudinal direction, and girders are connected by the transverse
beams, which are used to model the bridge deck and diaphragms.
The cross section of the bridge is shown in Fig. 6.

A 5-axle semitrailer truck, as shown in Fig. 2, was chosen as the
vehicle model. To fully illustrate the IAM, a total of 27 parameters
of the vehicle and bridge, all of which can affect the VBI behavior,
were chosen as interval parameters. The midpoint values of these

Table 2. Relative Differences between Bounds of Deflection Obtained by IAM and MCM

Speed (m/s) Level of uncertainty

Upper bounds Lower bounds

IAM (mm) MCM (mm) Relative difference (%) IAM (mm) MCM (mm) Relative difference (%)

10 0.01 –1.78 –1.80 1.11 –1.90 –1.88 –1.06
0.05 –1.57 –1.63 3.68 –2.14 –2.08 –2.88
0.10 –1.34 –1.45 7.59 –2.44 –2.31 –5.63
0.15 –1.13 (–1.28) –1.34 15.67 (4.48) –2.75 –2.62 –4.96

20 0.01 –1.83 –1.85 1.08 –1.95 –1.93 –1.04
0.05 –1.60 –1.70 5.88 –2.19 –2.10 –4.29
0.10 –1.35 (–1.45) –1.50 10.00 (3.33) –2.50 –2.36 –5.93
0.15 –1.10 (–1.28) –1.30 15.38 (1.54) –2.82 –2.70 –4.44

30 0.01 –1.86 –1.88 1.06 –2.00 –1.98 –1.01
0.05 –1.64 –1.71 4.09 –2.28 –2.19 –4.11
0.10 –1.40 –1.52 7.89 –2.66 –2.47 –7.69
0.15 –1.20 (–1.27) –1.32 9.09 (3.79) –3.04 –2.82 –7.80

Note: The values in parentheses were calculated with the subinterval technique.

Fig. 11. Bounds of bending moment time histories at midspan of Girder 4 under different levels of uncertainty (vehicle speed = 20 m/s): (a) h= 0.01;
(b) h= 0.05; (c) h= 0.10; (d) h= 0.15
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parameters, which can be found in the literature (Harris et al. 2007;
Huang et al. 1993; OBrien et al. 2010), are listed in Table 1. To sim-
plify the analysis, a sensitivity analysis can usually be performed
first to select those parameters that have more significant influence
on the target response than the others. All interval parameters are
assumed to have the same uncertainty level in the same case,
whereas different uncertainty levels are studied in different cases.

The vehicle is assumed to cross the bridge along the right lane,
as shown in Fig. 6. Under this loading condition, Girder 4 appears
to bear the largest amount of load among all girders and was there-
fore selected in the following analysis. It should be noted that,
because the road surface condition was found to have a negligible
effect on the accuracy of the results, only the results of good-class
road surface conditions are presented in this study for the sake of
brevity.

To verify the effectiveness of the IAM, the MCM was also
applied to obtain the lower and upper bounds of the bridge
responses. To implement the Monte Carlo simulation, the uniform
distribution was assumed over the interval of each parameter (Roy
and Oberkampf 2011). A convergence test was performed on the
MCM, and the results are shown in Fig. 7, where the vehicle speed
is set to 20 m/s and the uncertainty level of the parameters is 0.10.
Fig. 7 indicates that both the upper and lower bounds of both the
bridge deflection and bending moment at the midspan of Girder 4
start converging at approximately 2,000 simulations. In addition,
performing such large-scale dynamic simulation of the VBI analy-
sis is very time-consuming because of the complexity of its time-
dependent equation of motion, especially when the number of
DOFs of the bridge structure is large and when a large volume of
traffic flows needs to be considered (OBrien et al. 2010). Based
on the convergence test results of the MCM, the bounds yielded
by 2,000Monte Carlo simulations are therefore taken as reference
results when calculating the relative differences of the bounds
predicted by the IAM andMCM.

Bounds of Bridge Deflection

The bounds of bridge deflection are solved by the PSO algorithm.
The two acceleration coefficients in the algorithm are both set to 2,
and the range of inertia weight is from 0.4 to 0.9 (Liu et al. 2013).
Fig. 8 depicts the upper and lower bounds of the deflection time his-
tories at the midspan of Girder 4 obtained by the IAM and 2,000
Monte Carlo simulations, respectively, under different uncertainty
levels of the interval parameters. In all of these scenarios, the vehi-
cle speed is set to 20 m/s. The results calculated by the IAM, espe-
cially the lower bounds, are in good agreement with those calcu-
lated by theMCM, even at large uncertainty levels, such as 0.10 and
0.15. More specifically, the upper bounds predicted by the IAM are
larger than those predicted by the MCM, whereas the lower bounds
predicted by the IAM are smaller than those predicted by theMCM.
Therefore, the IAM can produce a slightly conservative estimation
of the interval width of the bridge deflection.

In addition, because of the use of the first-order Taylor series
expansion, the contribution of each interval parameter to the inter-
val width of bridge deflection can be easily obtained by evaluating
the magnitude of f½∂dðxc; tÞ�=∂aIigDai in Eq. (12), and the results
are shown in Fig. 9. For the sake of brevity, only the first three pa-
rameters of the bridge or vehicle that have the biggest contributions
to maximum bridge deflection are plotted. Fig. 9(a) shows that the
Young’s modulus of the girder (a1) and bending moment of inertia
of girder (a10) play key roles in determining the bridge deflection,
as expected. In addition, Fig. 9(b) shows that the factor that has the
biggest contribution to bridge deflection among all 15 vehicle pa-
rameters selected is the tire stiffness (a23). The reason is that the

wheelbase length of the vehicle (12.10 m) is almost equal to the
length of the bridge (12.19 m) in this example, thus the dynamic
response of the bridge is sensitive to the characteristics of the single
axle or wheel; in contrast, according to Eq. (6), the contribution of
interval parameter ai, f½∂dðxc; tÞ�=∂aIigDai, can be rewritten as
f½∂dðxc; tÞ�=∂aIigaci h i; therefore, the contribution of ai is not only

Fig. 12. Bounds of maximum bending moment of Girder 4 at midspan
with different vehicle speeds: (a)v=10m/s; (b) v=20m/s; (c)v=30m/s
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influenced by the sensitivity term ½∂dðxc; tÞ�=∂aIi , but also depends
on the magnitude of aci h i. Given the assumption that all interval pa-
rameters have the same uncertainty level (h i), those parameters
possessing large midpoint values (aci ), such as tire stiffness, can
greatly affect the interval width of the deflection. Fig. 9 also clearly
shows that the increase of uncertainty level of input interval param-
eters of the VBI system can lead to the increase of the interval width
of bridge deflection.

To further investigate the effectiveness of the IAM in the VBI
analysis, several cases with different vehicle speeds under good
road surface conditions were considered. For each specific case
with a given vehicle speed, the VBI analysis was set to run 10 times
with 10 sets of randomly generated road surface profiles under the
good-class road surface condition for the sake of statistical signifi-
cance (Deng and Cai 2010; Oliva et al. 2013), and the average value
of the 10 independent results was obtained. The lower and upper
bounds of the bridge maximum deflection at themidspan are plotted
in Fig. 10, and the relative differences between the results calculated
by the IAM and theMCM are listed in Table 2.

Fig. 10 clearly shows that the interval widths calculated by the
IAM cover those determined by 2,000 Monte Carlo simulations. As
shown in Table 2, the relative differences are generally less than
10%, whereas in a couple of cases, they reach over 15%. To demon-
strate the effect of the subinterval technique in improving accuracy,
four cases that have large differences were further refined by per-
forming the subinterval technique. According to Fig. 9, the first
three parameters of bridge and vehicle that significantly affect the
bridge deflection are a1, a10, and a23, respectively. Therefore, these
parameters were selected to undergo the subinterval technique,
where the original interval of each parameter is divided into two
subintervals, indicating that a total of 2� 2� 2 = 8 interval analyses
need to be performed to obtain the final bounds. The updated
bounds and relative differences are shown in the parentheses next to
the original results in Table 2. The comparison between the original
and updated results shows that the accuracy was greatly improved
by adopting the subinterval technique.

Bounds of Bending Moment

Once the displacement responses are expressed by the first-order
Taylor series, the task of determining the bounds of the bending
moment at themidspan of Girder 4 is transformed into the optimiza-
tion problem described in Eq. (15), which is also solved by the PSO
algorithm. Fig. 11 depicts the bounds of the bending moment time

histories at the midspan of Girder 4 obtained by the IAM and 2,000
Monte Carlo simulations, respectively. The lower and upper bounds
calculated by the IAM agree well with those calculated by the
MCMwhen the uncertainty level is less than 0.1, and the difference
in the bounds obtained by the two methods tends to increase as the
uncertainty level increases.

Fig. 12 and Table 3 show the upper and lower bounds of the
maximum bending moment and the relative differences between
the results calculated by the IAM andMCM, respectively. The sub-
interval technique was also used to improve the results of the cases
with large relative differences. Again, Table 3 shows that the subin-
terval technique can greatly improve the accuracy of the results.
With the subinterval technique, good accuracy can be achieved with
the largest relative difference being controlled within 10%.
However, it is noteworthy that the IAM no longer always yields
conservative bounds like the case for bridge deflection. This is
partly because neglecting the higher-order terms of the Taylor series
in Eq. (7) may bring uncertainty to the results (Xia and Yu 2014).
Meanwhile, the dependency phenomenon in Eq. (14) can also affect
the interval width of the bounds of bending moment.

Computational Efficiency of the IAM

Table 4 shows the comparison of computing time required by the
IAM, with or without use of the subinterval technique, versus
MCM to achieve relatively stable bounds of the response of the VBI
system. The simulations were carried out on a PCwith a 3.5-GHz 6-
core CPU and 64-GB RAM. It was found that the IAM is much
more efficient than the MCM by significantly reducing the number
of times needed to solve the VBI equation. Compared to the large
number of times MCM needed to solve Eq. (2) to find the bounds of
responses of the VBI system with satisfactory accuracy, the IAM
only needed to solve Eq. (8) once to get the midpoint response and
Eq. (9) 27 times to get the partial derivatives with respect to each
interval parameter. When the subinterval technique is applied, the
accuracy is greatly enhanced at the cost of increasing the computa-
tional time. However, the IAM with subinterval technique is still
much more computationally efficient than theMCM.

Application of IAM to a Field Bridge Example

The IAM was also applied to a field bridge to verify whether it can
successfully predict reasonable bounds of the responses of a field

Table 3. Relative Differences between Bounds of Bending Moment Obtained by IAM and MCM

Speed
(m/s)

Level of
uncertainty

Upper bounds Lower bounds

IAM
(�105 N m)

MCM
(�105 N m)

Relative difference
(%)

IAM
(�105 N m)

MCM
(�105 N m)

Relative difference
(%)

10 0.01 1.85 1.85 0.00 1.78 1.76 1.14
0.05 2.00 2.05 –2.44 1.64 1.60 2.50
0.10 2.20 2.32 –5.17 1.47 1.37 7.30
0.15 2.42 2.49 –2.81 1.20 1.20 0.00

20 0.01 1.86 1.86 0.00 1.77 1.76 0.57
0.05 2.00 2.04 –1.96 1.64 1.58 3.80
0.10 2.24 2.31 –3.03 1.44 1.36 5.88
0.15 2.42 2.44 –0.82 1.22 1.18 3.39

30 0.01 1.89 1.88 0.53 1.81 1.82 –0.55
0.05 2.05 1.99 3.02 1.62 1.72 –5.81
0.10 2.25 2.13 5.63 1.40 (1.54) 1.62 –13.58 (–4.94)
0.15 2.44 (2.37) 2.24 8.93 (5.80) 1.16 (1.38) 1.51 –23.18 (–8.61)

Note: The values in parentheses were calculated with the subinterval technique.
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bridge under vehicle loads when only limited information about the
bridge and vehicle is available. The tested bridge is located over
Cypress Bayou in District 61 on LA 408 East, Baton Rouge,
Louisiana. It has three simple spans, each measuring 16.764 m (55
ft) in length, and the third span of the bridge was instrumented. A
dump truck with a single front axle and a 2-axle rear axle group was
used in the test. Fig. 13 shows the profile of the tested bridge and the

loading position of the truck. Deflections and bending strains at the
bottom of the seven girders at the midspan were recorded when the
truck crossed the bridge along Lane 1 at a speed of 17.88 m/s (40
mi/h). The roughness of the bridge deck was measured by a laser
profile. More information about the test setup can be found in Deng
and Cai (2009).

The tested bridge was modeled by the grillage method. Each
girder consists of 30 beam elements in the longitudinal direction,
and the bridge deck and diaphragms were modeled by the transverse
beams. The dump truck was represented by a full-scale 2-axle vehi-
cle model with a total of 7 DOFs. The parameters of the tested
bridge and truck are listed in Table 5 (Deng and Cai 2010).

Considering the possible uncertainties in the bridge and vehicle
parameters resulting from the lack of sufficient data, several impor-
tant parameters were chosen as interval parameters based on the
sensitivity analysis in Fig. 9. For the bridge, the major factor

Fig. 13. Test setup: (a) profile of tested bridge; (b) cross section of bridge and loading position

Table 5. Parameters of Tested Bridge and Vehicle and Their Levels of Uncertainty

Parameter Description of parameter Value Level of uncertainty Reference

Bridge parameter Young’s modulus of the girders (Pa) 2.77� 1010 0.147 Tabsh and Nowak (1991)
Young’s modulus of the deck (Pa) 2.48� 1010 —

Young’s modulus of the diaphragms (Pa) 1.00� 1010 —

Density of the deck (kg/m3) 2.71� 103 —

Density of the girders and diaphragms (kg/m3) 2.40� 103 —

Torsional moment of inertia of girders (m4) 7.20� 10−3 —

Torsional moment of inertia of diaphragms (m4) 6.06� 10−3 —

Bending moment of inertia of girders (m4) 7.54� 10−2 —

Bending moment of inertia of diaphragms (m4) 0.29� 10−2 —

Vehicle parameter Sprung mass (kg) 24,808 —

Pitching moment of inertia (kg·m2) 172,160 —

Rolling moment of inertia (kg·m2) 31,496 —

Axle mass (kg) 725.4 —

Steer suspension stiffness (N/m) 727,812 0.158 Harwood et al. (2003)
Rear suspension stiffness (N/m) 1,969.034 0.236 Harwood et al. (2003)
Steer suspension damping (N·s/m) 2,189.60 —

Rear suspension damping (N·s/m) 7,181.80 —

Front tire stiffness (N/m) 1,972,900 0.137 Fancher et al. (1986)
Rear tire stiffness (N/m) 4,735,000 0.137 Fancher et al. (1986)

Table 4. Comparison of Computing Time between IAM and MCM

Method
Calculation times of

VBI equation
Computing
time (s)

IAM 28 1,500
IAM with subinterval technique 224 12,000
MCM (2,000 times) 2,000 110,000
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affecting the bridge responses is the bending stiffness (EI), which
follows normal distribution and has a coefficient of variance (COV)
of 0.075 (Tabsh and Nowak 1991). By adopting an interval that rep-
resents a 95% confidence level, an equivalent uncertainty level of
1.96 times the COV is used. For the purpose of simplifying the com-
putation process, only Young’s modulus (E) of the girders is treated
as the interval parameter whereas the bending moment of inertia (I)
is assumed to have a fixed value. For the vehicle, the weight can be
easily measured, whereas the stiffness of the suspension systems
and tires, which can influence bridge dynamic responses signifi-
cantly, is often difficult to measure and is thus selected as the inter-
val parameters here. The uncertainty levels of the selected interval
parameters are determined based on the available information in the
literature and are believed to be realistic to a certain extent.

The proposed IAM with the subinterval technique was then
used to predict the bounds of the deflections and bending strains of
the tested bridge with the existence of those nonprobabilistic uncer-
tainties, and the results are plotted in Fig. 14. Fig. 14 shows that the
predicted midpoint responses match the measured bridge responses
very well, which proves that the VBI model can simulate the physi-
cal dynamic behavior of the bridge under vehicular load with good
accuracy. Furthermore, the IAM predicts reasonable bounds of both
bridge deflections and strains that contain the measured responses.

This example demonstrates that, when information about some
key parameters is limited in the practice of bridge assessment, the
proposed IAM can be utilized as a useful tool to estimate reasonable
bounds of bridge responses by assuming reasonable uncertainty lev-
els for the uncertain parameters based on the limited data available
or experience. It should be noted that the degree to which the pre-
dicted bounds approach their true values still depends on the accu-
racy of the assumptions made on the uncertain parameters.
However, as compared to the traditional probabilistic methods, the
IAM does not need to know or assume the distribution types of the

uncertain parameters and can predict reasonable bounds of
responses with better accuracy based on limited information
available.

Summary and Conclusions

In this paper, an interval analysis method for the dynamic analysis
of a VBI system with nonprobabilistic uncertainties is proposed.
This method can be applied to predicting the bounds of vehicle-
induced bridge responses for complicated VBI systems for which
no closed-form solutions are available, and the influence of the road
roughness needs to be considered. In the proposed method, the
responses of the VBI system are approximated by the first-order
Taylor series, and the bounds of bridge responses can be explicitly
given. To avoid the possible extreme overestimation induced by the
direct interval arithmetic, the task of determining the bounds of the
bridge responses is transformed into the optimization problem
solved by the PSO algorithm. The subinterval technique is also
adopted to further improve the accuracy of the results. The results
from the numerical example show that both the bounds of bridge
deflection and bending moment predicted by the IAM are in good
agreement with those calculated by theMCM in most cases, even at
large parameter uncertainty levels, while requiring much less com-
putational effort.

The results from this study demonstrate that the IAM can be effi-
ciently applied to predicting the extreme dynamic responses of
complicated VBI systems with nonprobabilistic uncertainties with-
out much sacrifice of accuracy as compared to theMCM. An exam-
ple is also provided to illustrate the applicability of the IAM to the
assessment of field bridges when the information about the bridge
and vehicle parameters is limited. The results show that, under such
circumstances, this method can provide reasonable bounds for the
bridge responses of interest, which are very helpful in the decision-
making process in practice, especially when the accuracy of the pre-
dicted responses is critical.
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