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Study of vertical bending vibration
behavior of continuous prestressed
concrete box girders with corrugated
steel webs

Wei Ji1,2, Lu Deng1, Shizhong Liu2 and Pengzhen Lin2

Abstract
Prestressed concrete girders with corrugated steel webs have received considerable attention in the past two decades due to their
light self-weight and high prestressing efficiency. Most previous studies were focused on the static behavior of corrugated steel webs
and simple beams with corrugated steel webs. The natural frequencies are very important characteristics when evaluating the dynamic
responses of a bridge under external loads; however, very few studies have been conducted to investigate the dynamic behavior of full
prestressed concrete girders or bridges with corrugated steel webs, and no simple formulas are available for estimating the natural
frequencies of prestressed concrete girder bridges with corrugated steel webs. In addition, experimental work on full-scale bridges or
scale bridge models is very limited. In this article, formulas for predicting the vertical bending vibration frequencies of prestressed con-
crete box girders with corrugated steel webs are proposed based on Hamilton’s energy variational principle. A one-tenth scale model
is developed for an existing prestressed concrete box-girder bridge with corrugated steel webs. The frequencies predicted by the pro-
posed formulas are compared to the finite element analysis results and also the experimental results from the scale bridge model.
Good agreement is achieved between these results, indicating that the proposed formulas can provide a reliable and efficient tool to
predict the vertical bending vibration frequencies of prestressed concrete box-girder bridges with corrugated steel webs.
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Introduction

In the past two decades, prestressed concrete (PC) gir-
ders with corrugated steel webs (CSWs) have provided
an excellent alternative to conventional concrete girder
bridges. This new type of PC girder bridges with CSWs
is designed to take full advantages of the material
properties of the concrete flanges, prestressed tendons,
and steel webs. As shown in Figure 1 (Ji et al., 2012),
the concrete flanges provide the required bending
capacity, while the CSWs provide the desired shear
capacity but have little contribution to the bending
capacity.

However, the idea of replacing the concrete webs in
conventional PC box girders with CSWs can not only
substantially reduce the dead load of the girder but
also speed up the construction process and therefore
reduce the total construction cost. Moreover, the
CSWs do not absorb much prestressing force in the
concrete flanges and can thus achieve higher prestres-
sing efficiency than conventional PC box girders. The
Maupré Bridge in France (Hassanein and Kharoob,

2014) and the Caochanggou Bridge in China, shown in
Figure 2, are two examples of bridge structures adopt-
ing such girders.

Most of previous studies focused on the shear buck-
ling of CSWs (Driver et al., 2006; Easley and
McFarland, 1969; Elgaaly et al., 1996; Moon et al.,
2009; Yi et al., 2008) because the CSWs usually fail
due to shear buckling or yielding. The flexural beha-
vior of I-girders with CSWs has also been studied by
many researchers (Abbas et al., 2007a, 2007b; Elgaaly
et al., 1997; Nguyen et al., 2010; Sayed-Ahmed, 2005).
In addition, the fatigue performance of girders with
CSWs was also studied by Ibrahim (2001). Besides, the
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accordion effect of steel beams with CSWs was studied
by Huang et al. (2004). Researchers also studied the
orthotropic properties of corrugated webs and pro-
posed equivalent orthotropic plate models (Bertagnoli
et al., 2012). However, very few studies provided
experimental verification of these orthotropic plate
models.

However, most previous studies were focused on the
behavior of CSWs or steel beams with CSWs rather
than the performance of a full PC girder or a full

bridge with CSWs, and very few experimental studies
have been reported on the performance of PC girders
with CSWs (Mo et al., 2000, 2003). In addition, the
dynamic behavior of PC girders with CSWs received
much less attention than the static behavior.

The dynamic characteristics of a bridge in terms of
its vibration frequencies and mode shapes are very
important when evaluating the dynamic performance
of a bridge under external loads. For instance, the pre-
vious Ontario bridge design code (Ontario Ministry of
Transportation and Communications (OMTC), 1983)
and the current Chinese bridge design code (Ministry
of Communication of the People’s Republic of China
(MCPRC), 2004) both defined the dynamic impact
factor as a function of the fundamental frequency of
bridges. In practice, it is also important to have a good
estimation of the fundamental frequency of a bridge to
be constructed in order to avoid the possible resonance
with heavy trucks which usually have a quite narrow
range of frequencies between 1.5 and 4.5 Hz (Moghimi
and Ronagh, 2008).

The main purpose of this article is to study the ver-
tical bending vibration frequencies of continuous PC
girders with CSWs. The governing differential equa-
tions of motion for the free vibration of continuous
PC girders with CSWs are derived using Hamilton’s
energy variational principle. Formulas for predicting
the vertical bending vibration frequencies of PC box
girders with CSWs are developed. The accuracy of the
proposed formulas is verified against the experimental
results on a scale bridge model and also the finite ele-
ment (FE) analysis results. The results predicted by the
proposed formulas are also compared to the results
calculated using the Chinese bridge design code and
existing research results.

Shear modulus of CSWs

The shear modulus of the CSWs used in this study is
proposed by Samanta and Mukhopadhyay (1999) and
is defined as

Gs =
(L1 + L2)

(L1 + L3)

Es

2(1+ vs)
=aG ð1Þ

where G, Es, and vs are the shear modulus, Young’s
modulus of elasticity, and Poisson’s ratio of the flat
steel plates, respectively; a is the length reduction fac-
tor, which is the ratio of the projected length (L1 + L2)
to the actual length of the corrugated plates (L1 + L3)
shown in Figure 3. Since the value of a is less than 1,
the shear modulus of CSWs is smaller than that of flat
steel plates.

In order to investigate the effect of corrugation
shape on the vertical bending vibration frequencies of

Figure 2. Concrete bridge girders with CSWs: (a) Maupré
Bridge and (b) Caochanggou Bridge.

Figure 1. Main components of a PC box girder with
corrugated steel webs (Ji et al., 2012).
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continuous PC girders with CSWs, three types of cor-
rugation shape, namely CW1, CW2, and CW3, respec-
tively, are considered. The dimensions of the three
corrugation shapes are shown in Table 1. These are
most common dimensions used for the PC box girders
with CSWs in China and Japan.

Governing equations based on Hamilton’s
energy variational principle

Description of the problem and assumptions

The basic assumptions made for the PC box girders
with CSWs investigated in this study are summarized
as follows:

1. The flexural strength of the PC box girders with
CSWs is solely provided by the concrete flanges
while the CSWs have no contribution due to
the accordion effect.

2. The materials of the girder are linear elastic,
and the girder deflection and rotation are small.

3. The plane section assumption is adopted to cal-
culate the stresses in the web of the box girder.

4. The geometry of the girder and the support
conditions are symmetric. Also, the normal
stress and displacement in the lateral direction
are assumed to be zero.

Figure 4 shows a typical cross-section of the box gir-
der with CSWs. Assuming that a simply supported PC
box girder with CSWs is in a state of free vibration, as
shown in Figure 5, the longitudinal displacement of
the flanges can be described by a cubic-parabolic distri-
bution, which is the modification of the conic-parabola
proposed by Reissner (1946). Therefore, the longitudi-
nal displacement of the box girder shown in Figure 5

at any point and any time can be expressed as follows
(Luo et al., 2004)

W =W (x, t) ð2Þ

U (x, y, z, t)= � zu(x, t)� zvs(y)j(x, t) ð3Þ

where W is the vertical displacement of the box girder,
U (x, y, z, t) is the longitudinal displacement of the gir-
der, u(x, t) is the angular rotation of the cross-section
about the y-axis, j(x, t) is the additional maximum
angular rotation of the flange sections of the box gir-
der about the y-axis due to the shear-lag effect, and
vs(y) is the non-uniform distribution function of the
shear-lag-induced longitudinal displacement along the
flange width, which can be expressed by a cubic para-
bola as follows (Wu et al., 2003)

vs(y)=
1� yj j3

b3 0� yj j � b

1� b+ zb� yj jð Þ3

(zb)3
b� yj j � b+ zb

8<
: ð4Þ

From equation (3), it can be seen that the cross-
sections of the box girder no longer remain planar
because of the shear-lag-induced warp displacement
vs(y).

Table 1. Dimensions of corrugated steel webs.

Type of corrugation L1 (mm) L2 (mm) L3 (mm) Length reduction factor, a

CW1 340 160 226 0.8834
CW2 330 270 330 0.9091
CW3 430 370 430 0.9302

Figure 4. Cross-section of the box girder with CSWs.

Figure 3. Corrugation configuration and geometric notation.

Figure 5. The vertical deformation of a simply supported
girder under free vibration.
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Considering the symmetry of shear strain, the nor-
mal strain and shear strain in the top and bottom
flanges (z= � hu, z= hl) are given, respectively, by

ex =
∂U (x, y, z, t)

∂x
= � z u0(x, t)+vs(y)j

0(x, t)½ � ð5Þ

gxy =
U (x, y, z, t)

∂y
= �z

dvs(y)

dy

����
����j0(x, t) ð6Þ

For the CSWs, the shear strain gxz can be expressed
as

gxz =W 0(x, t)� u(x, t) ð7Þ

The vertical strain ez, transverse strain ey, and shear
strain gyz are very small compared to the three terms in
equations (5)–(7) and can therefore be neglected.

Governing differential equations

For the top flange, the strain energy can be calculated
as follows

�Vu =
1

2
Isu

ðl

0

Ec u0(x, t)½ �2 + 3

2
Ecu

0(x, t)j0(x, t)+Ec

9

14
j0(x, t)½ �2 + 9Gcj2(x, t)

5b2

� �
dx

ð8Þ

where Ec and Gc are Young’s modulus and shear mod-
ulus of the concrete flange, respectively; Isu is the
moment of inertia of the top flange; and l is the span
length of the girder.

For the bottom flange, the strain energy can be cal-
culated as follows

�Vl =
1

2
Isl

ðl

0

Ec u0(x, t)½ �2 + 3

2
Ecu

0(x, t)j0(x, t)+Ec

9

14
j0(x, t)½ �2 + 9Gcj2(x, t)

5b2

� �
dx

ð9Þ

where Isl is the moment of inertia of the bottom flange.
The strain energy in the CSWs is

�Vf =

ðl

0

GsAs

2
g2

xzdx ð10Þ

where As is the total cross-section area of two CSWs.
Thus, the internal potential energy of the PC box

girder with CSWs is the sum of the strain energy in the
concrete flanges and steel webs and can be calculated
as

V = �Vu + �Vl + �Vf ð11Þ

The kinetic energy of a PC box girder with CSWs
can be calculated as

T =
1

2

ðl

0

(rcAc + rsAs)
∂W

∂t

� �
dx ð12Þ

where rc and rs are the densities of the concrete flanges
and steel webs, respectively; Ac is the total cross-section
area of the top flange and bottom flange.

The equations of motion and the boundary/conti-
nuity conditions are rigorously derived via Hamilton’s
energy variational principle, which requires

d

ðt2
t1

(T � V )dt=

ðt2
t1

(dT � dV )dt= 0 ð13Þ

According to equation (13), the governing differen-
tial equations and natural boundary conditions of the
system are as follows

EcIu00(x, t)+
3

4
EcIj00(x, t)+GsAs W 0(x, t)� u(x, t)½ �= 0

ð14Þ

GsAs W 00(x, t)� u0(x, t)½ � � (rcAc + rsAs) €W (x, t)= 0

ð15Þ

EcI
9Gc

5Ecb2
j(x, t)� 9

14
j00(x, t)� 3

4
u00(x, t)

� �
= 0 ð16Þ

EcIu0(x, t)+
3

4
EcIj0(x, t)

� �
du l

0

�� = 0 ð17Þ

3

4
EcIu0(x, t)+

9

14
EcIj0(x, t)

� �
dj l

0

�� = 0 ð18Þ

GsAs W 0(x, t)� u(x, t)½ �dW l
0

�� = 0 ð19Þ

Free vibration

The terms W (x, t), u(x, t), and j(x, t) in equations (2)
and (3) can be easily rewritten in the following forms

W (x, t)=W (x) sin (vt+f) ð20Þ
j(x, t)= j(x) sin (vt+f) ð21Þ
u(x, t)=u(x) sin (vt+f) ð22Þ

where v is the circular frequency; f is the initial phase
angle.

After substituting equations (20)–(22) into equation
(14) and combining equations (15) and (16), the gov-
erning differential equation for the free vibration of the
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PC box girder with CSWs can be rewritten in terms of
the vertical displacement W (x, t) as shown below

W (6)(x, t)+
�mv2

GsAs

� 112Gc

5Ecb2

� �
W (4)(x, t)

� 8�mv2

EcI
+

�
112�mv2Gc

5GsAsEcb2

�
W (2)(x, t)

+
112�mv2Gc

5E2
c b2I

W (x, t)= 0

ð23Þ

where �m= rcAc + rsAs.
If equation (23) has non-zero solutions, then the

term sin (vt +f) is not always equal to zero. In this
case, equation (23) can be written as

W (6)(x)+
�mv2

GsAs

� 112Gc

5Ecb2

� �
W (4)(x)

� 8�mv2

EcI
+

112�mv2Gc

5GsAsEcb2

� �
W (2)(x)

+
112�mv2Gc

5E2
c b2I

W (x)= 0

ð24Þ

Equation (24) can be solved by first solving the follow-
ing characteristic equation

l6 +
�mv2

GsAs

� 112Gc

5Ecb2

� �
l4 � 8�mv2

EcI
+

112�mv2Gc

5GsAsEcb2

� �
l2

+
112�mv2Gc

5E2
c b2I

= 0 ð25Þ

From the relationship of roots and coefficients in
equation (25), one can easily prove that the third-order
equation about the variable l2 has one negative root
(i.e. l2

1\0) and another two positive roots (i.e. l2
2.0

and l2
3.0). Therefore, the six roots of equation (25)

are 6il1, 6l2, and 6l3, respectively. The general solu-
tion to equation (24) is

W (x)=C1 cosl1x+C2 sinl1x+C3 cosh l2x

+C4 sinh l2x+C5 coshl3x

+C6 sinh l3x

ð26Þ

where Ci(i= 1� 6) are the constants which can be
determined from the boundary conditions at the two
ends of the box girder with CSWs.

Subsection simultaneous method

A two-span continuous box girder with CSWs, as
shown in Figure 6, was used as an example to verify
the accuracy of the developed formulas for the vertical
bending frequencies. The vertical displacement of the
first span W1(x) and that of the second span W2(x) can
be written as

W1(x)=A1 cosl1x+B1 sinl1x+C1 cosh l2x

+D1 sinhl2x+E1 coshl3x+F1 sinh l3x

ð27Þ

W2(x)=A2 cosl1x+B2 sinl1x+C2 cosh l2x

+D2 sinhl2x+E2 coshl3x+F2 sinh l3x

ð28Þ

where Ai,Bi,Ci,Di,Ei,Fi (i= 1, 2) are the constants
which can be determined from the boundary condi-
tions at the two ends of the box girder with CSWs.

The angular rotation of the cross-section about the
y-axis u01(x) of the first span and u02(x) of the second
span can be written as

u01(x)=A1

�mv2

GsAs

� l2
1

� �
cosl1x

+B1

�mv2

GsAs

� l2
1

� �
sinl1x

+C1

�mv2

GsAs

+ l2
2

� �
coshl2x

+D1

�mv2

GsAs

+ l2
2

� �
sinhl2x

+E1

�mv2

GsAs

+ l2
3

� �
coshl3x

+F1

�mv2

GsAs

+ l2
3

� �
sinh l3x

ð29Þ

u02(x)=A2

�mv2

GsAs

� l2
1

� �
cosl1x

+B2

�mv2

GsAs

� l2
1

� �
sinl1x

+C2

�mv2

GsAs

+ l2
2

� �
cosh l2x

+D2

�mv2

GsAs

+ l2
2

� �
sinh l2x

+E2

�mv2

GsAs

+ l2
3

� �
cosh l3x

+F2

�mv2

GsAs

+ l2
3

� �
sinhl3x

ð30Þ

Figure 6. The geometry and boundary condition of a two-
span continuous box girder with corrugated steel webs.
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The additional maximum angular rotation of the
flange sections of the box girder of the first span j1(x)
and that of the second span j2(x) can be written as

j1(x)= � 4

3EcI
A1

EcIl4
1 � �mv2 EcIl2

1

GsAs
� 1

	 

�l3

1

sin l1x+B1

EcIl4
1 � �mv2 EcIl2

1

GsAs
� 1

	 

l3

1

cosl1x+C1

EcIl4
2 + �mv2 EcIl2

2

GsAs
+ 1

	 

l3

2

sinh l2x

0
@

+D1

EcIl4
3 + �mv2 EcIl2

2

GsAs
+ 1

	 

l3

2

coshl2x+E1

EcIl4
3 + �mv2 EcIl2

3

GsAs
+ 1

	 

l3

3

sinhl3x+F1

EcIl4
3 + �mv2 EcIl2

3

GsAs
+ 1

	 

l3

3

cosh l3x

1
A

ð31Þ

j2(x)= � 4

3EcI
A2

EcIl4
1 � �mv2 EcIl2

1

GsAs
� 1

	 

�l3

1

sin l1x+B2

EcIl4
1 � �mv2 EcIl2

1

GsAs
� 1

	 

l3

1

cosl1x+C2

EcIl4
2 + �mv2 EcIl2

2

GsAs
+ 1

	 

l3

2

sinh l2x

0
@

+D2

EcIl4
3 + �mv2 EcIl2

2

GsAs
+ 1

	 

l3

2

cosh l2x+E2

EcIl4
3 + �mv2 EcIl2

3

GsAs
+ 1

	 

l3

3

sinhl3x+F2

EcIl4
3 + �mv2 EcIl2

3

GsAs
+ 1

	 

l3

3

cosh l3x

1
A

ð32Þ

The boundary conditions for the anti-symmetric
mode shapes of two-span continuous box girders with
CSWs can be written as follows: W1(0)= 0, W1(l)= 0,
W2(0)= 0, W2(l)= 0, u01(0)= 0, u02(l)= 0, u01(l)=
u02(0)= 0, u1(l)=u2(0), j01(0)= 0, j02(l)= 0,
j01(l)= j02(0), and j1(l)= j2(0). These equations can be
satisfied only when the following equations hold:

sin (l1l)= 0 ð33Þ

l1 =
np

l
ð34Þ

Substituting equation (34) into equation (25), the
natural frequencies of the anti-symmetric modes of the
girder can be obtained as

vf = af

ffiffiffiffiffiffiffi
EcI

�m

r
np

l

	 
2

ð35Þ

af =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 5Ecb2

112Gc

np
l

� 
2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ EcI

GsAs

np
l

� 
2
+ 5Ecb2

14Gc

np
l

� 
2
+

5E2
cb2I

112GcGsAs

np
l

� 
4
q

ð36Þ

The boundary conditions for symmetric mode
shapes of two-span continuous box girders with CSWs
can be written as follows: W1(0)= 0, W1(l)= 0,
W2(0)= 0, W2(l)= 0, u01(0)= 0, u02(l)= 0, u01(l)=
u02(0), u1(l)=u2(0)= 0, j01(0)= 0, j02(l)= 0,
j01(l)= j02(0), and j1(l)= j2(0). These equations can be
satisfied only when the following relationship holds

l1 =
1+ 4n

4l
p ð37Þ

Substituting equation (37) into equation (25), the
natural frequencies of the symmetric modes of the gir-
der can be obtained as

vz = az

ffiffiffiffiffiffiffi
EcI

�m

r
1+ 4n

4l
p

� �2

ð38Þ

az = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 5Ecb2

112Gc

1+ 4n
4l

p
� 
2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ EcI

GsAs

1+ 4n
4l

p
� 
2

+ 5Ecb2

14Gc

1+ 4n
4l

p
� 
2

+
5E2

cb2I

112GcGsAs

1+ 4n
4l

p
� 
4

q

ð39Þ

From the expressions of af and az, it can be seen
that the shear deformation effect of CSWs is included
in the second term in the denominator, while the effect
of shear lag of the box girder is included in the second
term in the numerator and the third term in the
denominator. The coupling effect considering the shear
lag and shear deformation of CSWs is included in the
fourth term of the denominator. As for the existing
formulas for calculating the vibration frequencies of
girder bridges, none of these effects is considered.

Comparing the anti-symmetric and symmetric
vibration modes of two-span continuous box girders
with CSWs, it can be seen that the frequencies of the
anti-symmetric modes are composed of odd-numbered
frequencies, that is, the first, third, fifth frequencies,
and so on, while the frequencies of the symmetric
modes are composed of even-numbered frequencies,
that is, the second, fourth, sixth frequencies, and so
on.

Experimental study

Bridge model and test setup

The bridge model used in the experimental study is a
one-tenth scale model built for the Juancheng Yellow
River Bridge located in Shandong Province, China.
This bridge model is a two-span continuous concrete
box-girder bridge with CSWs. The length of the bridge
model is 6 m in total. The CSWs of the bridge model
have a thickness of 1.2 mm. The steel material has a
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yielding stress of fy = 296 MPa, Poisson’s ratio of
vs = 0.3, and Young’s modulus of Es = 206 GPa.
The compressive strength fc, Young’s modulus Ec, and
Poisson’s ratio vc for the upper and lower concrete
flanges are taken as 51.2 MPa, 34.5 GPa, and 0.2,
respectively. The dimensions of the PC box-girder
bridge model with CSWs are shown in Figure 7.

For the boundary condition, the bridge model is
supported by a hinge in the middle and a roller support
at each end. Two prestressing tendons were used in the
bridge model, as shown in Figure 8, with the prestres-
sing force monitored by the pressure sensors installed
at the two ends of the bridge model. An effective pre-
stressing force of 130 kN was applied on each prestres-
sing tendon.

Modal test

Modal test was performed to obtain the natural fre-
quencies and mode shapes of the bridge model. A total
of 11 measurement points were selected on the bridge
deck, as shown in Figure 9.

Both vertical and lateral accelerations were recorded
at each measurement point and the sampling rate was
set to 512 Hz. An impact hammer was used to excite
the vibration of the bridge model. A sample of the
measured vertical acceleration time history at Point 3
is plotted in Figure 10. The collected data were then
processed using commercial software and the first two
natural frequencies obtained were 61.94 and 75.94 Hz,
respectively. The corresponding mode shapes of the
first two modes are provided in Figure 11. It should be
noted that the modal information of higher modes was
not obtained due to the difficulty associated with excit-
ing higher modes in the modal test.

Results and discussion

The results obtained from both the experimental study
and FE analysis (using the MIDAS software) were

Figure 9. Measurement locations on the bridge deck in the modal test (unit: mm).

Figure 7. Dimensions of the PC box-girder bridge model with
CSWs: (a) cross-sectional view, (b) elevation view, and
(c) corrugated steel web.

Figure 8. Layout of the prestressing tendons.
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used to verify the accuracy of the proposed formulas
for the vertical bending vibration frequencies of PC
box girders with CSWs, as shown in Table 2. The FE

model of the PC box girder with CSWs created using
the MIDAS software is shown in Figure 12. In this
model, the CSWs were modeled using the composite
beam elements, the prestressed tendons were modeled
by three-dimensional (3D) two-node spar elements.
The end supports were constrained in both the vertical
and lateral directions while the movements in the verti-
cal, lateral, and longitudinal directions were con-
strained for the middle support. Based on the modal
analysis in MIDAS, the natural frequencies of the
model are summarized in Table 2 while the first six
mode shapes are shown in Figure 13.

From Table 2, it can be observed that all six natural
frequencies as well as the corresponding mode shapes
obtained from proposed method agree very well with
the results from the FE analysis. The second frequency
obtained from the modal test on the bridge model also
agrees with both the calculated frequency using the
proposed formula and the FE analysis result very well;
however, the fundamental natural frequency of the
bridge model from the modal test is about 10% greater
than the other two results. This could be due to the
fact that the hinge at the middle of the girder is not
perfectly smooth and therefore restraints the rotation
of the girder to some degree and that the measured size
of the girder is slightly larger than the designed.

In addition, it can also be observed that the calcu-
lated frequencies using the proposed formula are
slightly smaller than FE analysis results. This is possi-
bly due to the fact that the MIDAS software only con-
siders the effect of shear deformation of steel webs

Table 2. Comparison of modal test results.

Mode number Proposed formulas in this article FE analysis results Modal test results

Frequency (Hz) Type of mode Frequency (Hz) Type of mode Frequency (Hz) Type of mode

1 54.74 VAF 55.65 VAF 61.94 VAF
2 73.98 VSF 75.41 VSF 75.94 VSF
3 131.03 VAF 134.10 VAF – –
4 149.72 VSF 153.30 VSF – –
5 205.17 VAF 210.08 VAF – –
6 223.52 VSF 228.79 VSF – –

VAF: vertical anti-symmetric flexural; VSF: vertical symmetric flexural.

Figure 11. The first two mode shapes obtained from the
modal test: (a) mode 1 and (b) mode 2.

Figure 10. Measured acceleration time history at Point 3.

Figure 12. The finite element model of the tested girder
model.
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while ignoring the shear-lag effect and the coupling
effect.

The effect of shear modulus correction on the vibra-
tion of the bridge model was also investigated. The first
six vertical bending vibration frequencies of the bridge
model with CSWs, with and without considering the
effect of shear modulus correction, were obtained using
the proposed method in this article, and the results are
shown in Figure 14.

As can be seen from Figure 14, small differences are
observed between the vibration frequencies of the gir-
der with and without considering the effect of shear
modulus correction of the CSWs.

The effect of different beam theories on the vibra-
tion of the girder was also investigated. The Euler–
Bernoulli beam theory and Timoshenko beam theory
were studied. The vertical bending vibration frequen-
cies of the bridge model by adopting the Euler–
Bernoulli beam theory and Timoshenko beam theory
were obtained and compared to the results predicted
by the proposed method in this study, as shown in
Figure 15.

It can be seen from Figure 15 that the frequencies
predicted by the proposed method in this study agree
very well with those calculated according to the
Timoshenko beam theory while both are significantly
smaller than the results obtained using the Euler–
Bernoulli beam theory. Since the Timoshenko beam
theory only considers the shear deformation of the
CSWs, these observations indicate that the shear
deformation of the CSWs has a significant influence
on the vertical bending vibration frequencies of the
bridge model with CSWs, while the shear-lag effect
and the coupling effect have little influence on the ver-
tical bending vibration frequencies of bridge model
with CSWs.

Figure 13. The first six mode shapes of the girder model: (a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4, (e) mode 5, and (f)
mode 6.

Figure 14. The vertical bending vibration frequencies with and
without considering the shear modulus correction.
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Parametric study

In order to further evaluate the proposed formulas, a
parametric study was conducted to investigate the
effect of two important parameters, namely the width-
to-span ratio and corrugation pattern, on the vibration
of the girder with CSWs. The results obtained from
the proposed formulas are compared to those obtained
using other methods.

Effect of width-to-span ratio

The effect of the width-to-span ratio on the vertical
bending vibration of the girder was studied through
first changing the span length of the bridge model with
CSWs. In order to make a fair comparison, the height
of the bridge model was assumed as constant. Five
bridge span lengths were investigated, namely, 2, 3, 4,
5, and 6 m for each span of the continuous bridge,
respectively, which correspond to width-to-span ratios
of 0.325, 0.217, 0.163, 0.130, and 0.108. The first six
vertical bending vibration frequencies were obtained
for these bridge models, as summarized in Table 3,

where these results are compared to the results
obtained using the Timoshenko beam theory (T-beam
theory).

As can be seen from Table 3, for all different span
lengths studied, the vertical bending vibration frequen-
cies of the bridge model with CSWs obtained from the
proposed method in this article and the Timoshenko
beam theory are in good agreement. Therefore, the
vertical bending vibration frequencies of bridge model
with CSWs can be predicted using the Timoshenko
beam theory in practice. In addition, it can also be
observed that the calculated frequencies using the pro-
posed formula are slightly smaller than the results
obtained using the Timoshenko beam theory. This
could be due to the fact that the Timoshenko beam
theory only considers the effect of the shear deforma-
tion of the steel webs without considering the shear-lag
effect and the coupling effect.

The effect of width-to-span ratio was also studied
by varying the width of the girder while assuming con-
stant girder height and span length. Different values of
the width of the flat section, as denoted by b1 in
Figure 16, are assumed, namely, 0:5b1, 1:5b1, 2:5b1,
3:5b1, respectively. These values correspond to width-
to-span ratios of 0.192, 0.242, 0.292, and 0.342, respec-
tively. The vertical bending vibration frequencies with
the different girder widths were obtained and the first
six modes are summarized in Table 4.

Table 3. The first six vertical bending vibration frequencies of bridge models with different span lengths.

Mode
number

Span-to-length ratio

0.108 0.130 0.163 0.217 0.325

Proposed
method
(Hz)

T-beam
theory
(Hz)

Proposed
method
(Hz)

T-beam
theory
(Hz)

Proposed
method
(Hz)

T-beam
theory
(Hz)

Proposed
method
(Hz)

T-beam
theory
(Hz)

Proposed
method
(Hz)

T-beam
theory
(Hz)

1 18.44 18.59 25.10 25.36 35.85 36.33 54.74 55.71 93.17 95.27
2 26.84 27.13 35.85 36.33 49.96 50.80 73.98 75.51 121.63 124.58
3 54.74 55.71 70.13 71.54 93.17 95.27 131.03 134.26 205.17 210.38
4 64.36 65.60 81.67 83.43 107.45 109.98 149.72 153.48 232.67 238.51
5 93.17 95.27 115.97 118.75 149.72 153.48 205.17 210.38 314.77 322.18
6 102.70 105.09 127.27 130.39 163.66 167.81 223.52 229.15 342.09 349.90

Figure 15. Comparison of vertical bending frequencies
obtained by different methods.

Figure 16. Geometric shape of flat section.
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It can be seen from Table 4 that the vertical bending
vibration frequencies of the bridge model with CSWs
obtained from the proposed formulas agree well with
the results from using the Timoshenko beam theory
despite the varying width-to-span ratios due to the
change of girder width.

Effect of corrugation pattern

Assuming the same web height and thickness, the effect
of corrugation pattern on the vertical bending vibra-
tion frequencies of the bridge model with CSWs was
studied. Three types of corrugation wave patterns,
namely CW1, CW2, and CW3 with parameters pro-
vided in Table 1, were considered. The results for these
three corrugation wave patterns are shown in Table 5.

It can be seen from Table 5 that the difference of
vertical bending vibration frequencies of the bridge
model with CSWs caused by different corrugation
wave patterns is very small.

Comparison with the Chinese code and
other research results

The fundamental natural frequency is one of the most
important dynamic characteristics of bridges and it

plays a very important role in predicting the dynamic
performance of the bridge structure under external
loads, such as wind, earthquake, and moving vehicles.
To the best knowledge of the authors, no bridge design
code has yet provided any simple formula for calculat-
ing the natural frequencies of continuous PC girders
with CSWs. Therefore, the best references available
would be some bridge design codes or existing research
results which provide such formulas for predicting the
natural frequencies for continuous PC girders although
such information is also very limited in the literature.

The current Chinese General Code for Design of
Highway Bridges and Culverts (MCPRC, 2004) defines
the dynamic impact factor as a function of the bridge
fundamental frequency and provides the following for-
mulas for estimating the fundamental frequency of
continuous bridges

f11 =
13:616

2pl2

ffiffiffiffiffiffiffi
EIc

mc

r
ð40Þ

f12 =
23:651

2pl2

ffiffiffiffiffiffiffi
EIc

mc

r
ð41Þ

where E is Young’s modulus of the material, Ic is the
moment of inertia of the structure cross-section, mc is
the mass per unit length of the structure cross-section,
and l is the span length. It is stated in the code that f11
should be used when calculating the impact factor for
positive bending moment and shear, while f12 should
be used when calculating the impact factor for negative
bending moment.

Gao et al. (2012) proposed an improved method to
estimate the fundamental frequency of continuous gir-
der bridges and verified the accuracy of the proposed
method by theoretical analysis combined with numeri-
cal simulations. In their study, the following expression
was proposed for estimating the natural frequencies of
two-span continuous girder bridges with uniform
cross-section and uniform spans

Table 4. The first six vertical bending vibration frequencies of bridge models with different girder widths.

Mode number Span-to-length ratio

0.192 0.242 0.292 0.342

Proposed
method
(Hz)

T-beam
theory
(Hz)

Proposed
method
(Hz)

T-beam
theory
(Hz)

Proposed
method
(Hz)

T-beam theory (Hz) Proposed
method
(Hz)

T-beam
theory
(Hz)

1 55.48 56.49 54.28 55.19 53.10 53.94 52.38 53.12
2 75.18 76.79 73.09 74.52 71.65 72.93 69.68 70.80
3 133.73 137.19 128.73 131.70 124.24 126.84 120.51 122.71
4 152.93 156.96 146.96 150.41 141.64 144.64 137.16 139.69
5 209.85 215.46 201.03 205.79 193.27 197.37 186.61 190.04
6 228.68 234.76 218.93 224.07 210.36 214.79 202.99 206.68

Table 5. The first six vertical bending vibration frequencies
under different corrugation wave patterns.

Mode number Frequency (Hz)

CW1 CW2 CW3

1 54.74 54.35 53.94
2 73.98 73.42 72.72
3 131.03 129.81 128.31
4 149.72 148.29 146.52
5 205.17 203.10 200.54
6 223.52 221.24 218.42
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fn =
1

2pl2
(p2, 3:9272, 4p2, . . . )

ffiffiffiffiffiffiffi
EIc

mc

r� �2

ð42Þ

The fundamental frequency of the scale bridge
model predicted by equations (40) to (42) is 118.99,
206.69, and 86.25 Hz, respectively, while the value cal-
culated using the proposed formula in this study is
54.74 Hz, indicating that the fundamental frequency
obtained from the Chinese design code and Gao et al.
(2012) is significantly larger than the frequency pre-
dicted by the proposed method in this study. These
large differences clearly indicate the need for propos-
ing specific formulas for accurately predicting the nat-
ural frequencies of PC box-girder bridges with CSWs.

Summary and conclusion

In this study, formulas for predicting the vertical bend-
ing vibration frequencies of PC box girders with CSWs
were proposed based on Hamilton’s energy variational
principle. To verify the accuracy of the formulas, a
one-tenth scale model was developed for an existing
PC box-girder bridge with CSWs. The results predicted
from the proposed formulas were compared to the
results obtained from the FE analysis and also the
experimental results from the scale bridge model.
Good agreement was achieved between these results,
indicating that the proposed formulas can provide a
reliable and efficient tool to predict the vertical bend-
ing vibration frequencies of the PC box-girder bridges
with CSWs. Based on the results from the parametric
study, the following conclusions can also be drawn:

1. The proposed method can be adopted in the
analysis of a full girder bridge with confidence
and can significantly reduce the modeling effort
and computational effort in the FE analysis.
The results obtained from the proposed method
are more accurate than those obtained using
theoretical methods.

2. The effect of shear deformation of the CSWs
on the vertical bending vibration frequencies of
bridges with CSWs is significant, while the
shear-lag effect and the coupling effect between
the shear lag and shear deformation have negli-
gible influence on the vertical bending vibration
frequencies of bridge with CSWs. In addition,
the difference between the results with and
without considering the shear modulus correc-
tion is very small.

3. The vertical bending vibration frequencies of
bridges with CSWs predicted by the proposed
formulas agree well with those calculated based
on the Timoshenko beam theory for a wide
range of width-to-span ratios considered.

4. The corrugation wave patterns considered in this
study have little effect on the vertical bending
vibration frequencies of bridges with CSWs.

5. The existing formulas for predicting the funda-
mental vibration frequency of continuous
bridges provided in the Chinese design code
(JTG D60-2004) and the available research
results may significantly overestimate the fun-
damental frequency of PC continuous box-
girder bridges with CSWs and should be used
with caution.

It should be noted that the method proposed in this
study is applicable for analyzing the global responses
of PC box-girder bridges with CSWs, including the
modal responses and global displacements. It is not
suitable for the analysis of local responses such as local
displacements and strains.
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