
Dynamic Behavior of Damaged Bridge with Multi-Cracks

Under Moving Vehicular Loads

Xinfeng Yin*,§, Yang Liu*,¶, Lu Deng† and Xuan Kong‡

*School of Civil Engineering and Architecture

Changsha University of Science & Technology
Changsha 410004, Hunan, China

†College of Civil Engineering, Hunan University

Changsha 410082, Hunan, China

‡Department of Mechanical Engineering
University of Houston, Houston, TX 77004, USA

§yinxinfeng@163.com
¶liuyangbridge@163.com

Received 22 July 2015

Accepted 3 February 2016

Published

When studying the vibration of a bridge–vehicle coupled system, most researchers mainly focus

on the intact or original bridge structures. Nonetheless, a large number of bridges were built

long ago, and most of them have su®ered serious deterioration or damage due to the increasing

tra±c loads, environmental e®ect, material aging, and inadequate maintenance. Therefore, the
e®ect of damage of bridges, such as cracks, on the vibration of vehicle–bridge coupled system

should be studied. The objective of this study is to develop a new method for considering the

e®ect of cracks and road surface roughness on the bridge response. Two vehicle models were
introduced: a single-degree-of-freedom (SDOF) vehicle model and a full-scale vehicle model with

seven degrees of freedom (DOFs). Three typical bridges were investigated herein, namely, a

single-span uniform beam, a three-span stepped beam, and a non-uniform three-span contin-

uous bridge. The massless rotational spring was adopted to describe the local °exibility induced
by a crack on the bridge. The coupled equations for the bridge and vehicle were established by

combining the equations of motion for both the bridge and vehicles using the displacement

relationship and interaction force relationship at the contact points. The numerical results show

that the proposed method can rationally simulate the vibrations of the bridge with cracks under
moving vehicular loads.

Keywords: Bridge; vehicle; vibration; crack; surface roughness.

1. Introduction

The bridge–vehicle interaction has attracted much attention over the past two

decades owing to the signi¯cant increase of heavy vehicles running at high speeds on

the highways. By modeling a moving vehicle as a moving load, moving mass, moving
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sprung mass, or complicated vehicle models, the dynamic response of the vehicle was

studied by many researchers.1–6 For the bridge model in the literature, they were

usually modeled as simply-supported beams1 and multi-span continuous beams.3,7–11

However, their studies were focused on intact bridge structures. Very few studies

have considered the e®ect of damaged bridge structures with cracks.

As a matter of fact, a large number of bridges were built long ago, and many of

them have su®ered serious deterioration or damage due to the increasing tra±c

loads, environmental e®ect, material aging, and inadequate maintenance.12,13 Few

researchers have studied the e®ect of cracks on the vibration characteristics of

damaged beams. Dimarogonas14 studied and veri¯ed the accuracy of modeling the

bridge crack with discrete spring models. Neild et al.15,16 studied the nonlinear vi-

bration characteristics of reinforced concrete damaged beams by impact excitation

vibration tests. Rizzo and Scalea17 analyzed the dynamic response of a beam with

several breathing cracks to harmonic excitations. All the above studies are not re-

lated to the e®ect of the crack model on the vibration response of damaged beams

under moving vehicles.

For the vibration of damaged bridges under moving vehicles, some studies were

conducted using the simple bridge–vehicle coupled models. Lee and Ng18 analyzed

the dynamic response of a beam with a single-sided crack under a moving load. Abdel

Wahab et al.19 and Cheng et al.20 studied the e®ect of crack models on the dynamic

response of beams under moving loads. Mahmoud and Abou Zaid21 studied the

dynamic response of simply-supported beams with transverse cracks subjected to a

moving mass. Law and Zhu22 studied the dynamic behavior of reinforced concrete

bridge structures with the damage modeled as open crack or breathing crack under

the moving vehicular loads. Ariaei et al.23 and Nguyen and Tran24 studied a cracked

bridge subjected to a moving vehicular load by analyzing the operational de°ection

time history of a vehicle–bridge system. Khoa25 compared the open and breathing

crack detections of a beam subjected to a simple moving vehicle. All the above

studies are related to the simply-supported beam with simple crack model and simple

vehicle model, such as the moving loads, other than the complex bridge–vehicle

coupled models.

This study is mainly focused on establishing a new methodology to fully consider

the e®ect of bridge cracks, vehicle models, and road roughness condition on the

bridge behavior under moving vehicular loads. Two vehicle models were introduced:

a single-degree-of-freedom (SDOF) vehicle model and a three-dimensional vehicle

model with seven degrees of freedom (DOFs). The damaged bridges were modeled as

three types of models, namely, a single-span uniform beam, a three-span stepped

beam, and a three-span continuous non-uniform bridge deck. A model of massless

rotational spring was adopted to describe the local °exibility induced by a crack in

the beam. The coupled equations for the bridge and vehicle were established by

combining the equations of motion for both the bridge and vehicles using the dis-

placement relationship and interaction force relationship at the contact points. The
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numerical simulations show that the proposed method can rationally simulate the

vibrations of the damaged bridge under moving vehicles, and that crack plays an

important role in the bridge frequencies, mode shapes, and the vibration of the

vehicle–bridge coupled system.

2. Analytical Model of Vehicle–Bridge Coupled System

2.1. Vehicular load model

The three-dimensional analytical model for the vehicle is shown in Fig. 1. The ve-

hicular body is assigned three DOFs, corresponding to the vertical displacement

(yt), rotation about the transverse axis (�t), and rotation about the longitudinal axis

roll (�). Each wheel/axle set is provided with two DOFs in the vertical and roll

directions (y1
a; y

2
a; �

1
a; �

2
a). Therefore, the total number of independent DOFs is

seven.

The vertical displacements of the suspension springs can be written as:

U 1
sy ¼ ðyt � y1

aÞ þ ðs1=2Þð�t � �1
aÞ þ l2�t; ð1Þ

U 2
sy ¼ ðyt � y1

aÞ � ðs1=2Þð�t � �1
aÞ þ l2�t; ð2Þ

U 3
sy ¼ ðyt � y2

aÞ þ ðs2=2Þð�t � �2
aÞ � l3�t; ð3Þ

U 4
sy ¼ ðyt � y2

aÞ þ ðs2=2Þð�t � �2
aÞ � l3�t; ð4Þ

where U i
syði ¼ 1, 2, 3, 4) is the vertical displacements of the axles, l2 is the distance

between the front axle and the center of the vehicle, l3 is the distance between the

rear axle and the center of the vehicle, s1 and s2 are the distance between the right

and left wheels for the front and real axles, respectively.

The vertical elastic and damping forces of the ith suspension can be written as:

F i
sy ¼ Ki

syU
i
sy; ð5Þ

F i
dsy ¼ Di

syU
: i
sy; i ¼ 1; 2; 3; 4; ð6Þ

(a) (b)

Fig. 1. Analytical model of a two-axle vehicle: (a) elevation view; (b) cross-sectional view.
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where U i
syði ¼ 1, 2, 3, 4) is the vertical displacements of the axles:

U 1
tyx ¼ y1

a þ ðs1=2Þ� 1
a � ½�rðxÞ1� � y1

b�contact; ð7Þ

U 2
tyx ¼ y1

a � ðs1=2Þ� 1
a � ½�rðxÞ2� � y2

b�contact; ð8Þ

U 3
tyx ¼ y2

a þ ðs2=2Þ� 2
a � ½�rðxÞ3� � y3

b�contact; ð9Þ

U 4
tyx ¼ y2

a þ ðs2=2Þ� 2
a � ½�rðxÞ4� � y4

b�contact; ð10Þ
rðxÞ denotes the vertical road surface roughness, and yi

b�contact the dynamic vertical

de°ection of the bridge at the contact position x.

The vertical interaction forces acting on the bridge surface can be written as:

F i
ty ¼ Ki

tyU
i
ty; ð11Þ

F i
dty ¼ Di

tyU
: i
ty; i ¼ 1; 2; 3; 4: ð12Þ

The equations of motion of the full-scale vehicle can be obtained from the Lagrangian

formulation, which are

mt €y t þ ðF 1
sy þ F 2

sy þ F 3
sy þ F 4

syÞ þ ðF 1
dsy þ F 2

dsy þ F 3
dsy þ F 4

dsyÞ ¼ mtg; ð13Þ

Ixt €�t þ ðs1=2ÞðF 1
sy � F 2

syÞ þ ðs2=2ÞðF 3
sy � F 4

syÞ þ ðs1=2ÞðF 1
dsy � F 2

dsyÞ
þ ðs2=2ÞðF 3

dsy � F 4
dsyÞ ¼ 0; ð14Þ

Izt €�t þ l2ðF 1
sy þ F 2

syÞ � l3ðF 3
sy þ F 4

syÞ þ l2ðF 1
dsy þ F 2

dsyÞ � l3ðF 3
dsy þ F 4

dsyÞ ¼ 0; ð15Þ

ma1 €y
1
a � ðF 1

sy þ F 2
syÞ þ ðF 1

ty þ F 2
tyÞ � ðF 1

dsy þ F 2
dsyÞ þ ðF 1

dty þ F 2
dtyÞ ¼ ma1g; ð16Þ

Ixa1 €�
1
a � ðs1=2ÞðF 1

sy � F 2
syÞ þ ðs1=2ÞðF 1

ty � F 2
tyÞ � ðs1=2ÞðF 1

dsy � F 2
dsyÞ

þ ðs1=2ÞðF 1
dty � F 2

dtyÞ ¼ 0; ð17Þ

ma2 €y
2
a � ðF 3

sy þ F 4
syÞ þ ðF 3

ty þ F 4
tyÞ � ðF 3

dsy þ F 4
dsyÞ þ ðF 3

dty þ F 4
dtyÞ ¼ ma2g; ð18Þ

Ixa2 €�
2
a � ðs2=2ÞðF 3

sy � F 4
syÞ þ ðs2=2ÞðF 3

ty � F 4
tyÞ � ðs2=2ÞðF 3

dsy � F 4
dsyÞ

þ ðs2=2ÞðF 3
dty � F 4

dtyÞ ¼ 0; ð19Þ

Eqs. (13)–(19) can be rewritten in a matrix form as:

½M� �f€y�g þ ½C��f _y �g þ ½K��fy�g ¼ fFGg þ fF��bg; ð20Þ

where ½M��, ½C��, ½K� � are the mass, damping, and sti®ness matrices of the vehicle,

respectively; fy�g ¼ the vector of vertical displacements of the vehicle; fFGg ¼ the

gravity force vector of the vehicle; and fF��bg ¼ the vector of the wheel–road contact

forces acting on the vehicle.
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2.2. Vibration theory of the damaged bridge with cracks

In the vibration study of cracked bridges, the use of massless rotational spring to

describe the local °exibility induced by a crack in the beam has been veri¯ed to be

accurate, leading to signi¯cant savings in the computational e®ort and cost of the

dynamic analysis of cracked beams.21,26,27 Therefore, in the present paper, the

massless rotational spring is adopted to simulate the crack in a beam. The damaged

bridge is modeled as a beam with many cracks. It is assumed that a total number of n

cracks are located at sections x1;x2; . . . ;xn, such that 0 < x1 < x2 . . . < xn < L. The

beam is divided into nþ 1 segments by the n cracks. The crack at xi is modeled by a

massless rotational spring with sti®ness Kn as shown in Fig. 2.

The governing di®erential equation for the forced °exural vibration of the beam

with variable cross-section under the moving forces can be written as:

@ 2

@x2
KðxÞ @

2ybðx; tÞ
@x2

� �
þ �mðxÞ @

2ybðx; tÞ
@t2

þ c
@ybðx; tÞ

@t
¼
X4
i¼1

piðtÞ�ðx� �Þ; ð21Þ

where KðxÞ is the °exural sti®ness, �mðxÞ the mass per unit length, c the damping,

and ybðx; t) the vertical displacement of the beam. Using the modal superposition

technique, the vertical displacement can be rewritten as ybðx; tÞ ¼ �bðxÞ�bðtÞ, where
�bðxÞ is the mode shape function of the beam, and �bðtÞ is the generalized modal

coordinate.

2.3. Mode shape function of a damaged beam with cracks

Based on Li's work,27 the di®erence between a beam with a crack at the ith section

and the corresponding beam without a crack is that the rotation of the cracked beam

at the ith section has a jump. Therefore, the mode shape function of the cracked

beam with variable cross-sections can be derived from the governing di®erential

Fig. 2. The damaged beam with cracks.
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equation of the intact beam with variable cross-sections. The mode shape function

can be expressed as:

�bðxÞ ¼ R1S1ðxÞ þR2S2ðxÞ þ R3S3ðxÞ þR4S4ðxÞ; ð22Þ
where SiðxÞ andRi (i ¼ 1, 2, 3, 4) are the linearly independent fundamental solutions

and integral constants, respectively. Obviously, SiðxÞ are dependent on the sti®ness

KðxÞ and mass per unit length �mðxÞ. Based on the results of Shifrin and Ruotolo26

and Li,27 the linearly independent fundamental solutions denoted by �SiðxÞ (i ¼ 1, 2,

3, 4) satisfy the following normalization condition at the origin of the co-ordinate

system.

Using the fundamental solutions �Siðx), the mode shape function for the ¯rst

interval [0,x1) can be expressed as:

�1ðxÞ ¼ �ð0Þ �S1ðxÞ þ � 0ð0Þ �S2ðxÞ �
Mð0Þ
Kð0Þ

�S3ðxÞ �
1

Kð0Þ ½Qð0Þ � �ð0ÞMð0Þ� �S4ðxÞ;

ð23Þ

�ð0Þ ¼ K 0ð0Þ
Kð0Þ ; ð24Þ

where �ð0Þ, � 0ð0Þ, Mð0Þ and Qð0Þ, respectively, denote the displacement, slope,

bending moment, and shear force of the beam at x ¼ 0. They are called the initial

parameters in this paper, and only two of them are unknown for any kind of support

con¯guration at x ¼ 0. It is evident that K 0ð0Þ ¼ 0 for a uniform beam. The dis-

placement, bending moment, and shear force at all the boundaries of two neighboring

segments are required to be continuous,

�iþ1ðxiÞ ¼ �iðxiÞ;Miþ1ðxiÞ ¼ MiðxiÞ;Qiþ1ðxiÞ ¼ QiðxiÞ: ð25Þ
As introduced above, a model of massless rotational spring is adopted in this paper to

describe the local °exibility induced by each crack in the non-uniform beam. If a

crack is located at section x ¼ xi, the slope has a jump as,

φi+1(xi) = φi(xi) + λ̄iφi (xi), ð26Þ
where λ̄ is the °exibility of the rotational spring, which is a function of the crack

depth and beam height.

Considering the continuous conditions of displacement, bending moment, and

shear force as well as the jump of slope at the boundary of the ith segment and the

(iþ 1)th segment, the mode shape function of the ith segment can be written as

φi+1(x) = φi(x) + λ̄iφi (xi)S̄2(x − xi)H(x − xi), ð27Þ

where �iðxÞ is the mode shape function of the ith segment (Fig. 2), HðxÞ is the

Heaviside function x 2 ½xi�1;xi�. The second term represents the jump of the slope at

the boundary of the two neighboring segments. Equation (26) is a recurrence

X. Yin et al.
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formula for the mode shape functions. Using �1ðxÞ, the mode shape function of the

¯rst segment in Eq. (23), we can rewrite Eq. (27) for i ¼ 2; 3; . . . ;n as

φi+1(x) = φ1(x) +
n

i=1

λ̄iφ i(xi S̄2(x − xi)) H(x − xi). ð28Þ

2.4. Assembling the vehicle–bridge coupled system

Using the displacement relationship and the interaction force relationship at the

contact points, the vehicle–bridge coupled system can be established by combining

the equations of motion for both the bridge and vehicle, as shown below10:

Mb

Mv

" #
y
::
b

y
::
v

( )
þ Cb þ Cb�b Cb�v

Cv�b Cv

" #
y
:
b

y
:
v

( )
þ Kb þKb�b Kb�v

Kv�b Kv

" #

� yb

yv

� �
¼ Fb�r

Fb�r þ FG

( )
; ð29Þ

where Cb�b, Cb�v, Cv�b, Kb�b, Kb�v, Kv�b, Fb�r, and Fb�r are due to the wheel–bridge

surface contact forces. When the vehicle moves across the bridge, the positions of the

contact points as well as the values of the contact forces change, indicating that all

the terms listed above are time dependent and will change as the vehicle moves

across the bridge.

To simplify the bridge model and save the computation e®ort, the modal super-

position technique is used. Using Eqs. (23) and (28), the mode shapes of the dam-

aged beam can be obtained. The displacement vector of the damaged bridge fybg in

Eq. (29) can be expressed as:

fybg ¼ ½ f�1g f�2g . . . f�ng�f �1 �2 � � � �ngT ¼ ½�b�f�bg; ð30Þ
where m is the total number of modes used for the bridge; f�ig and �i are the ith

mode shape of the bridge and the corresponding generalized modal coordinate, re-

spectively. Each mode shape is normalized such that f�igT ½Mb�f�ig ¼ 1 and

f�igT ½Kb�f�ig ¼ !2
i .

Assuming the damping matrix ½Cb� in Eq. (31) to be equal to 2!i�i½Mb�, where �i
is the percentage of the critical damping for the ith mode of the bridge, Eq. (29) can

then be simpli¯ed into the following:

I

M�

� �
€�b
y
::
�

( )
þ 2!i�iI þ �T

b Cb�b�b �T
b Cb��

C��b�b C�

� �
_�b
y
:
�

( )

þ !2
i I þ �T

b Kb�b�b �T
b Kb��

K��b�b K�

� �
�b
y�

� �
¼ �T

b Fb�r

F��r þ FG

� �
:

ð31Þ

The vehicle–bridge coupled system in Eq. (31) contains only the modal properties of

the bridge and the physical parameters of the vehicles. As a result, the complexity of
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solving the vehicle–bridge coupling equations is greatly reduced. Equation (31) can

be solved by the Newmark-� method in time domain.

2.5. Bridge surface condition

The bridge surface condition is an important factor that a®ects the dynamic response

of both the bridge and vehicles. The bridge surface pro¯le is usually assumed to be a

zero-mean stationary Gaussian random process and can be generated through an

inverse Fourier transformation based on the power spectral density (PSD) function

given as follows28–32:

rðxÞ ¼
XN
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2’ðnkÞ�n

p
cosð2	nkxþ �kÞ; ð32Þ

where �k is the random phase angle uniformly distributed from 0 to 2	; ’ðÞ is the
PSD function (m3/cycle) for the bridge surface elevation; and nk is the wave number

(cycle/m). In the present study, the following PSD function has been used:

’ðnÞ ¼ ’ðn0Þ
n

n0

� ��2

ðn1 < n < n2Þ; ð33Þ

where n is the spatial frequency (cycle/m), n0 is the discontinuity frequency of 1/2	

(cycle/m); ’ðn0) is the roughness coe±cient (m3/cycle) whose value is chosen

according to the road condition, and n1 and n2 are the lower and upper cut-o®

frequencies, respectively. The International Organization for Standardization29 has

proposed a road roughness classi¯cation index from A (very good) to H (very poor)

corresponding to di®erent values of ’ðn0Þ listed in Table 1.

3. Numerical Examples

3.1. Comparison on a uniform single-span cracked beam

To illustrate the application of the proposed method, the normalized mid-span de-

°ection of the beam with a moving mass is compared with the prediction by Mah-

moud and Abou Zaid.21 Figure 3 shows two beams with intact and cracked

conditions under a moving mass. The parameters of the beam adopted are: length

L ¼ 50m, height hb ¼ 1:0m, width B ¼ 0:5m, elastic modulus E ¼ 2:1� 1011 Pa,

and density ¼ 7860 kg/m3. The crack at mid-span is assumed with a crack height of

0.5m and longitudinal crack width of 0.2mm. The moving mass is 20% of the total

Table 1. Values of ’ðn0Þ for road roughness classi¯cations.

Classi¯cations Ranges of ’ðn0Þ
Very good from 2� 10�6 to 8 � 10�6

Good from 8� 10�6 to 32� 10�6

Average from 32� 10�6 to 128� 10�6

Poor from 128� 10�6 to 512� 10�6

Very poor from 512� 10�6 to 2048� 10�6
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mass of the beam. Comparison of the mode shapes and the normalized de°ection of

the intact beam and cracked beam are shown in Figs. 4 and 5.

3.1.1. The mode shapes of the uniform cracked beam

Based on Eq. (23) and the results of Li,27 the solutions SiðxÞ for a uniform, simply-

supported beam are

S1ðxÞ ¼ ekx; S2ðxÞ ¼ e�kx; S3ðxÞ ¼ sin kx; S4ðxÞ ¼ cos kx;

k4 ¼ m!2

K
:

ð34Þ

(a) (b)

(c)

Fig. 4. Mode shapes of the intact and cracked beams: (a) ¯rst mode shape; (b) second mode shape; (c)

third mode shape.

(a) (b)

Fig. 3. Two beam models subjected to a moving mass: (a) intact beam; (b) cracked beam.

Dynamic Behavior of Damaged Bridge with Multi-Cracks
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Using Siðx) and Eq. (26), the fundamental solutions can be obtained as follows:

�S1ðxÞ ¼ 1

2
ðcoshðkxÞ þ cosðkxÞÞ; �S2ðxÞ ¼

1

2k
ðsinhðkxÞ þ sinðkxÞÞ;

�S3ðxÞ ¼ 1

2k2
ðcoshðkxÞ � cosðkxÞÞ; �S4ðxÞ ¼

1

2k3
ðsinhðkxÞ � sinðkxÞÞ:

ð35Þ

The mode shape function for the interval [0, l/2) of the ¯rst segment is

�1ðxÞ ¼ � 0ð0Þ �S2ðxÞ �
Qð0Þ
Kð0Þ

�S4ðxÞ; x 2 ½0; l=2Þ: ð36Þ

The mode shape function for the second segment of interval [l/2, l] is

φ2(x) = φ (0)S̄2(x) − Q(0)
K(0)

S̄4(x) + λ̄1[X (0)S̄2 (l/2)

− Q(0)
K(0)

S̄4 (l/2)]S̄2(x − l/2), x ∈ [l/2, l],
ð37Þ

where λ̄1 is the °exibility of the rotational spring, which is a function of the crack

depth and beam height; based on the study of Dimarogonas,14λ̄¼ 5:346h1fð
Þ,

 ¼ hc

hb
, where hc is the height of the crack, hb is the height of the cross-section of the

beam at the crack location, and fð
Þ ¼ 1:862
 2 � 3:95
 3þ 16:375
 4 � 37:226
 5þ
76:81
 6 � 126
 7 þ 172
 8 � 143:97
 9 þ 66:56
 10.

Using Eqs. (34)–(37) and the parameters of the beam, the mode shapes of the

cracked beam can be obtained. Figure 4 shows a comparison of the mode shapes of

the intact and cracked beam. It can be seen that because the slope of the beam at the

crack location has a jump, the e®ect of the crack on the mode shapes is obvious.

3.1.2. Comparison of the beam de°ection

Figure 5 shows a comparison of the beam de°ection predicted by the present and

existing studies. It can be seen that the present results agree excellently with those of

(a) (b)

Fig. 5. Comparsion of the beam de°ection: (a) mass velocity � ¼ 10m/s; (b) mass velocity � ¼ 20m/s.

X. Yin et al.
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Mahmoud and Abou Zaid21 for both the cracked and intact cases. In addition, the

velocity of the moving mass has little e®ect on the present results, while the crack at

the mid-span has a signi¯cant e®ect on the de°ection of the beam under a moving

mass.

3.1.3. E®ect of the number of cracks

To study the e®ect of the number of cracks on the normalized de°ection, three cracks

with the same height and width are assumed at the locations of 1/4 span, 1/2 span,

and 3/4 span. Figure 6 shows that the normalized bridge de°ection increases as the

number of cracks increases and the maximum normalized de°ection for the beam

with three cracks is 1.3 times of that for the beam with one crack.

3.2. Three-equal-span stepped beam

All the above studies were conducted for simply-supported beams and few have been

conducted for multi-span beams. Therefore, a three-equal-span stepped beam with

uniform sections at each span studied previously by Yin et al.10 was adopted as the

second bridge model, as shown in Fig. 7. The °exural sti®ness of the central span is

twice that of the side spans. Each span length is 20.0m, and the density per unit

length for all spans is assumed to be �A ¼ 1000 kg/m. The °exural sti®ness of the

(a) (b)

Fig. 6. E®ect of the numbers of cracks on the beam de°ection: (a) mass velocity � ¼ 10m/s; (b) mass
velocity � ¼ 20m/s.

(a) (b)

Fig. 7. Two beam models subjected to a moving vehicle model: (a) intact beam; (b) cracked beam.
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side span is EI ¼ 1:96� 106 kN.m2. The cracks at the locations of 1/4 span, 1/2

span, and 3/4 span are assumed to have a crack height of 0.5m and width of 0.2mm.

Since the simpli¯ed moving mass in the Figs. 5 and 6 may not precisely simulate the

practical vehicles on the highway bridges, a more suitable vehicle model, i.e. a SDOF

vibrational system, was used to study the vibration of the cracked beam.

3.2.1. Mode shape comparison

Since the three equal-span stepped beam is a continuous beam, the frequencies and

mode shapes of the continuous beam can be obtained as follows30,31:

�ciðxÞ ¼ �iðxÞ þ ~�iðxÞ; ð38Þ
where �iðxÞ are the vibration modes of a single-span beam, with a length equal to the

total length of the three-span beams with the same end supports, but without the

intermediate supports, and ~�iðxÞ are the augmenting cubic spline functions, which

are chosen such that each �ciðxÞ satis¯es the boundary conditions at the two ends

and the zero de°ection conditions at the intermediate supports. Based on Eq. (23)

and Li's results,27 the function �iðxÞ can be obtained in a way similar to Eqs. (34)–

(37), and the function ~�iðxÞ can be obtained using the cubic spline expressions by

satisfying all the boundary conditions. The ¯rst three natural frequencies and cor-

responding mode shapes calculated by the present method are shown in Table 2 and

Fig. 8. As can be seen, the ¯rst frequency of the beam with three cracks is 59.7% of

that of the intact beam, and the jumps occur at the locations of cracks. Therefore, the

cracks can a®ect both the natural frequencies and mode shapes of the three-equal-

span stepped cracked beam.

3.2.2. Comparison of de°ection of the cracked and intact beams

As discussed earlier, for the simply-supported beam, the crack at the mid-span can

signi¯cantly a®ect the de°ection of the beam. In this section, the e®ect of cracks on

the de°ection of the three-equal-span stepped beam was studied. From the results

shown in Fig. 9, we observe that the beam de°ection increases as the number of

cracks increases, and the maximum de°ection of the beam with three cracks is 1.46

times that of the beam with one crack. Therefore, for the three-span stepped beam

with equal spans, the cracks play an important role in the vibration of the cracked

beam.

Table 2. First three natural frequencies of the cracked and intact beams.

Simulating method First
frequency (rad/s)

Second
frequency (rad/s)

Third
frequency (rad/s)

Intact beam 38.86 47.59 75.32

Cracked beam with a crack 37.04 47.51 70.53

Cracked beam with three cracks 23.20 43.02 66.10
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(a) (b)

(c)

Fig. 8. Mode shapes of the intact and cracked beams: (a) ¯rst mode shape; (b) second mode shape;

(c) third mode shape.

(a) (b)

Fig. 9. Comparison of the de°ection of cracked and intact beams: (a) ¯rst span; (b) central span.
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3.2.3. E®ect of road surface roughness on the de°ection of cracked beam

In the previous studies by Deng and Cai,5 Yin et al.,28 and Zu,32 the bridge surface

condition was found to be an important factor that a®ects the dynamic response of

intact bridges. Therefore, in this section, the e®ect of road surface roughness on the

dynamic de°ection is investigated. As shown in Fig. 10, the de°ection of the bridge

increases when the surface roughness condition changes from good to poor classi¯-

cations. The maximum vertical de°ection of the mid-span of the ¯rst span increases

from 2.5mm under good roughness condition to 3.25mm under poor roughness

condition. Therefore, the bridge surface condition is proven to have a large in°uence

on the vibration of the cracked beam.

3.3. Three-span continuous non-uniform bridge

In the third example, the three-dimensional vehicle–bridge coupled vibrational sys-

tem was adopted, which is more realistic for simulating the bridge vibration under

moving vehicles. The bridge is a three-span continuous non-uniform bridge as shown

in Fig. 11, and the vehicle is a full-scale vehicle model with seven DOFs as shown in

Fig. 1. The modulus of elasticity of the bridge is E ¼ 3� 1010 N/m2 and the density

is � ¼ 2400 kg/m3. The width of the cross-section is 7.5m, and the height of the

cross-section changes from 2.0 to 4.5m with as a function of the quadratic parabola.

The cracks at the locations of 1/4 span, 1/2 span, and 3/4 span are assumed to have

a crack height of 0.5m and a width of 0.2mm. The parameters of the full-scale

vehicle are shown in Table 3.

3.3.1. Mode shape comparison

The di®erence between the mode shapes calculated for the three-span continuous

non-uniform bridge model and those for the aforementioned two beam models is that

(a) (b)

Fig. 10. Comparsion of the beam displacements under road surface roughness: (a) ¯rst span; (b) central

span.
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the °exural sti®ness KðxÞ and mass per unit length �mðxÞ are not constant. Based on

Eq. (23) and Li's results,27 for a non-uniform beam, the °exural sti®ness KðxÞ and
mass per unit length can be given as:

KðxÞ ¼ �ð1þ �xÞ6; �mðxÞ ¼ ð1þ �xÞ2; ð39Þ

Fig. 11. Details of the three-span continuous bridge.

Table 3. The parameters of the full-scale vehicle.

Vehicle parameter Value

Mass of truck body mt 24808 kg

Pitching moment of inertia of truck body Izt 172,160 kg.m2

Rolling moment of inertia of truck body Ixa1, Ixa2 31,496 kg.m2

Mass of truck front axle ma1 724 kg

Mass of truck rear axle ma2 800 kg

Suspension spring vertical sti®ness of the ¯rst axle K 1
sy;K

2
sy 242604 (N/m)

Suspension vertical damper of the ¯rst axle D1
sy, D

2
sy 2190 (N.s/m)

Suspension spring vertical sti®ness of the second axle K 3
sy;K

4
sy 1,903,172 (N/m)

Suspension damper coe±cient of the second axle D3
sy, D

4
sy 7982 (N.s/m)

Sti®ness of the tires for front axle 1,972,900 (N/m)

Sti®ness of the tires for rear axle 4,735,000 (N/m)
Distance between the front and the center of the truck l1 3.73m

Distance between the rear axle and the center of the truck l2 1.12m

Distance between the right and left axles s1 2.40m
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where �; �;  are the constants to be determined from the cross-sectional height

distributions of the beam. The solutions SiðxÞ are given as:

SiðxÞ ¼ e��i& ; i ¼ 1; 2; 3; 4; ð40Þ
& ¼ lnð1þ �xÞ; ð41Þ

�1;2;3;4 ¼ � 1

2
3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4 4þ !2

�

� �s !
: ð42Þ

Similarly, using Eqs. (22)–(28), the function �iðxÞ of the vibration modes of a single-

span beam with the same end supports but without the intermediate supports can be

calculated. Considering that the cubic spline expressions ~�iðxÞ satisfy all the

boundary conditions, the mode shapes and frequencies of the three-span continuous

non-uniform bridge model can be obtained as shown in Table 4 and Fig. 12. Clearly,

the cracks also a®ect the natural frequencies and mode shapes of the non-uniform

three-span continuous beam.

3.3.2. E®ect of vehicle models on the de°ection of cracked beam

The time histories of the de°ections at the mid-span under the three vehicle models

with moving mass, simple vehicle model, and full vehicle model are plotted in Fig. 13.

Clearly, deviation exists between the dynamic de°ections based on the moving mass,

Table 4. First three natural frequencies of the intact and cracked beams.

Simulating method First frequency

(rad/s)

Second frequency

(rad/s)

Third frequency

(rad/s)

Intact beam in present method 18.15 29.94 38.73
Cracked beam with a crack 17.42 29.89 36.35

Cracked beam with three cracks 16.20 28.52 34.10

(a) (b)

Fig. 12. Mode shapes of the intact and cracked beams: (a) ¯rst mode shape; (b) second mode shape;

(c) third mode shape.
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simple vehicle model, and full vehicle model, indicating that the moving mass and

simple vehicle model lose their accuracy for the dynamic de°ection. Therefore, the

vehicle models can a®ect the results of the simulation, and more realistic vehicle and

bridge models should be considered in the studies.

3.3.3. E®ect of cracks on the de°ection of cracked beam

The e®ects of cracks on the de°ection of the non-uniform three-span continuous

bridge were studied with the results shown in Figs. 14 and 15. A small crack (height

0.25m and width 0.2mm) and a large crack (height 0.5m and width 0.2mm) are

assumed respectively at the same position. Figure 14 shows that the beam de°ection

increases as damage degree increases. Figure 15 shows that the beam de°ection

increases as the number of cracks increases, and the maximum de°ection for the ¯rst

span with three cracks is 1.34 times that of the beam with one crack. Therefore, for

(c)

Fig. 12. (Continued)

(a) (b)

Fig. 13. E®ect of vehicle models on mid-span displacements: (a) ¯rst span; (b) central span.
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the non-uniform three-span continuous beam, the cracks are one of the key factors

that a®ect the vibration of the cracked beam.

3.3.4. E®ect of road surface roughness on the de°ection of cracked beam

In this section, the e®ect of surface roughness on the dynamic de°ection of the bridge

is discussed. As shown in Fig. 16, the de°ection of the bridge increases when the

roughness condition changes from good to poor. The maximum vertical de°ection of

the mid-span of the ¯rst span increases from 3.51mm under good roughness condi-

tion to 6.37 cm under poor roughness condition. Therefore, the surface condition has

been proven to have a large in°uence on the vibration of damaged bridges, and

regular maintenance of the bridge surface is a very e®ective way of reducing the

vehicle-induced vibration for the bridge.

(a) (b)

Fig. 14. Mid-span displacements of cracked and intact beams: (a) ¯rst span; (b) central span.

(a) (b)

Fig. 15. Mid-span displacements of cracked and intact beams: (a) ¯rst span; (b) central span.
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4. Conclusions

The objective of this study is develop a new approach for considering the e®ect of

bridge cracks, vehicle models, and road surface roughness conditions on the bridge

behavior under moving vehicular loads. Two vehicle models are adopted, i.e. a SDOF

vehicle model and a full-scale vehicle model with seven DOFs. Three damaged

bridges are considered, namely, a single-span uniform beam, a three-span stepped

beam, and a three-span continuous non-uniform bridge. A massless rotational spring

is adopted to describe the local °exibility induced by a crack on the bridge. The

coupled equations for the bridge and vehicle system are established by combining the

equations of motion for both the bridge and vehicles using the displacement rela-

tionship and interaction force relationship at the contact points. The numerical

results show that: (1) the proposed method can rationally simulate the vibration of

the damaged bridge under moving vehicles, and factors such as the types of vehicle

and bridge models have little in°uence on the accuracy; (2) crack plays an important

role in the bridge vibration frequencies, mode shapes, and the vibration of the ve-

hicle–bridge coupled system; (3) the road surface condition has a large in°uence on

the vibration of damaged bridges, and regular maintenance of the bridge surface is an

e®ective way for reducing the vehicle-induced vibration for damaged bridges.

The successful application of the proposed method to simulate the dynamic re-

sponse of a damaged bridge induced by the moving vehicles indicates that the pro-

posed method can be applied to improving the study on the interaction between the

bridge and moving vehicles. The proposed method will be further validated by ¯eld

measurements from real bridges in future studies.
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