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Abstract: Accurately obtaining the stress of steel components is of great importance for the condition assessment of civil structures. Cur-
rently, methods for structure stress detection have some drawbacks such as the capability of obtaining structural stress increment rather than
the total stress, causing structural damage, and high cost. To overcome these drawbacks, a deep learning framework for total stress detection
of steel components is proposed and its feasibility is illustrated with an example. First, the adopted deep neural network is briefly introduced,
followed by the introduction of the dataset preparation. In order to maximize the stress detection accuracy, parameter analysis was conducted
and the mean average precision achieved by the well-trained model for detection of the stresses under consideration is 89.67%. The robust-
ness of the trained model was further examined and the procedures for application of the proposed approach were summarized. The presented
method provides a new idea to detect the total stress of structure components that is difficult to obtain with a traditional sensor-based method.
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Introduction

Accurately obtaining the stress of steel components is of great im-
portance for the condition assessment of a structure. Existing meth-
ods for structure stress detection can be generally sorted into two
classes, including the local destructive testing (DT) methods and
the nondestructive testing (NDT) methods. The local DT methods,
including the blind-hole drilling method (Weng and Chen 1993),
the ring-core method (Zuccarello 1999), and the hole drilling
method (Sánchez-Beitia and Roca 2014), are stress-relief techni-
ques. Typical NDT methods include electrical methods [based on
electric resistance strain gauges (Li et al. 2005) and/or vibrating
wire strain gauges (Han et al. 2017)], magnetic methods [including
the Barkhausen noise method (Franco Grijalba and Padovese
2018), the magneto acoustic emission method (Stupakov et al.
2017), the metal magnetic memory method (Venkatachalapathi
et al. 2018)], the ultrasonic method (Kurashkin et al. 2019), and
the X-ray diffraction method (Brar and Singh 2014; Turan et al.
2019). However, both the DT and the NDT methods have some
drawbacks. The DT methods cause structural damage and usually

require a complex operation. On the other hand, the NDT methods,
for instance, the electrical methods, are usually only capable of ob-
taining the incremental stress rather than total stress of structures.
The magnetic methods are only applicable for stress detection of
ferromagnetic materials and are significantly affected by the mag-
netic characteristics of ferromagnetic materials. In addition, the de-
tection accuracy of the ultrasonic method is usually low while the
cost of the X-ray diffraction method is quite expensive due to its
high demand on equipment and operation environment.

During the past few years, deep learning methods have been
widely applied in many aspects of civil structures. One of the most
important applications is related to crack detection, with focus on
crack detection and classification (Cha et al. 2017; Li et al. 2020),
obtaining crack width and length (Ni et al. 2019; Yang et al.
2018), and developing techniques for autonomous crack detection
(Dung and Anh 2019; Kang and Cha 2018). Some other researchers
focused on identifying the type of damages in civil structures based
on deep learning-based approaches (Cha et al. 2018; Wang et al.
2019). Furthermore, some scholars presented a deep learning frame-
work for assessing the remaining fatigue life of bridge steel compo-
nents (Fathalla et al. 2018; Yan et al. 2019), while others developed
deep convolutional neural network (CNN)-based methods for reveal-
ing the unknown correlation between structural damage and mea-
sured structure accelerations (Abdeljaber et al. 2017) and/or strains
(Gulgec et al. 2017; Weinstein et al. 2018). In addition, Lee et al.
(2018) utilized a deep learning algorithm to optimize the design of
a ten-bar truss and demonstrated the advantages of such an algorithm
over traditional neural networks. Recently, Dick et al. (2019) estab-
lished a deep learning-based intelligent machine-vision platform for
detecting and forecasting threats that are likely to cause structure
failures. However, to the authors’ best knowledge, there has been
no application of deep learning approaches for the stress detection
of civil structures.

The purpose of this paper is to present a deep learning frame-
work for total stress detection of steel components. This paper is
organized as follows. In Part 2, the development of the adopted
deep learning approach, that is, the Faster region-based CNN
(Faster R-CNN), is briefly described. In Part 3, the details on data-
set preparation as well as the implementation of Faster R-CNN are
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introduced; the indexes for performance evaluation of the trained
model are also described. In Part 4, the effects of three important
parameters, including the anchor scale, the mini-batch size as
well as the learning rate, on stress detection accuracy are investi-
gated; an optimal combination of these parameters for training
the Faster R-CNN was obtained. The robustness of the trained
model was further examined using new images. In Part 5, strategies
on improving the efficiency of the proposed approach are discussed
and procedures for application of the proposed approach are sum-
marized. In the last part, the main conclusions from the study are
drawn and future research directions are discussed.

Methodology

In the present study, the Faster R-CNN, which is composed of two
networks including the region proposal network (RPN) and Fast
region-based CNN (Fast R-CNN) that share the same CNN for
image feature extraction, was used to detect the stress of structures.
Fig. 1 illustrates the architecture of the Faster R-CNN. The function
of the RPN is to provide object proposals (OPs) based on these
input images, and the function of the Fast R-CNN is to localize
these OPs provided by the RPN and to detect stresses. The devel-
opment of the Faster R-CNN is introduced briefly in this part.

CNNs

Usually, a CNN consists of some convolutional (CONV) layers,
max-pooling layers (MPLs), fully connected (FC) layers, and soft-
max layers. The function of CONV layers is to abstract features
from input RGB images with a series of three-dimensional kernels
(filters) consisting of learnable weights. The function of the MPL is
to cut down the input size by performing downsampling and the
function of an FC layer is to connect all neurons obtained from
its previous layers. The function of a soft-max layer is to make pre-
diction of the class of its input according to the probabilities of the
input belonging to each individual class. These probabilities are
calculated through a soft-max function based on the features ab-
stracted from an FC layer. The input is sorted into the class with
the highest probability. More information about the convolution
process can be found from Cha et al. (2017).

RPNs

The function of the RPN, whose overall architecture is illustrated in
Fig. 2, is to propose OPs. As shown in Fig. 2, a series of images
under consideration are taken as the input of the RPN whose outputs
are hundreds and thousands of OPs, each with a probability of being
an object. These region proposals are generated by sliding a small
network (namely, a 3 × 3 window) on the feature map output by
the last layer of the CNNs (Ren et al. 2017). According to the
study of Ren et al. (2017), when a window slides to each location
of the feature map, nine region proposals are generated correspond-
ing to nine rectangular boxes that are called anchors. The center of
these anchors is the same as that of the sliding window and can be
parameterized with eight constants [namely, center of each sliding
window: (xa, yb), three different widths and heights: (wk

a, h
l
a),

where k, l= 1, 2, 3]. The concept of Intersection-over-Union (IoU)
is put forward for calculating the overlap between a candidate box
(e.g., an anchor) and a ground-truth box (GTB), as shown in
Fig. 3, and the IoU is calculated with

IoU =
Area(AC ∩ AGT )

Area(AC ∪ AGT )
(1)

where AC ∩ AGT= the intersection of the candidate box and the GTB;
and AA ∪ AGT= their union. Fig. 4 shows an example of the region
proposal of specimen surface under the stress level of 50 MPa. An
anchor is designated with a positive label under two different condi-
tions: (1) its IoU overlapping with a GTB achieves the highest value;
(2) its IoU overlapping with every GTB is larger than 0.7 (Ren et al.
2017). On the other hand, a nonpositive anchor is designated with a
negative (background) label under the condition that its IoU

Fig. 2. Overall architecture of the RPN.

Fig. 1. Overall architecture of the Faster R-CNN.
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overlapping with any GTB is less than 0.3. Anchors that are neither
positive nor nonpositive are discarded during the training process.

All sliding windows are mapped to a feature vector through the
rectified linear unit (ReLU) activation function (Nair and Hinton
2010). The obtained feature vector is then taken as the input of two
fully connected layers that are usually called the box-classification
layer and box-regression layer, respectively. After the training pro-
cess, the box-classification layer computes the probability of being
an object in each of the nine generated boxes at the location of
every sliding window (Cha et al. 2017), and the box-regression
layer calculates the center coordinates, and the width as well as the
height of a predicted bounding box that achieves a best match with
a GTB (Girshick et al. 2014). The RPN can be trained end-to-end tak-
ing advantages of these techniques of stochastic gradient descent
(SGD) min-batch as well as backpropagation. Readers can find
more details about the RPN from Ren et al. (2017).

Fast R-CNN

The function of the Fast R-CNN, whose overall architecture is illus-
trated in Fig. 5, is to localize and classify objects in images. As can
be observed from Fig. 5, the Fast R-CNN uses CNNs for the
abstraction of the feature map of an input image and adopts the
OPs provided by the RPN. Corresponding to each OP, a fixed-size
feature vector will be abstracted from the feature map by taking ad-
vantage of the region of interest (RoI) pooling layer that performs
the max pooling operation. Each feature vector is then taken as the
input of a series of FC layers followed by two correlated layers,
namely, a soft-max layer and a regression layer. With regard to
each RoI, the soft-max layer outputs the probability of being
each of p+ 1 categories (p training classes+ 1 background class)
and, in the meantime, the regression layer calculates the outcome
of four location parameters including two center coordinates
(Tu

x , T
u
y ), the height (Tu

h ), and the width (Tu
w) of object bounding

boxes.
The Fast R-CNN can be trained end-to-end as well by taking

advantage of the techniques of SGD min-batch as well as backpro-
pagation. For each labeled RoI, a multiclass loss function given in
the following equation was adopted for the joint training of the
classification and bounding-box regression:

L(p, u, Tu, v) = Lcls(p, u) + λ[u ≥ 1]
∑

i∈{x,y,w,h}
Lreg(T

u
i , vi) (2)

where Lcls= the log loss function; Lreg= the regression loss function,
both of which can be found in the study of Ren et al. (2017); u and v=
the label and location parameters (i.e., center coordinates, width as
well as height) of each ground-truth bounding box, respectively.
For each RoI, when its IoU overlapping with the bounding box of
one ground truth is larger than 0.5, its label is positive (u= 1), and
it is labeled as background (u= 0) when the maximal value of its
IoU overlapping with the bounding boxes of all ground truth is within
the range of (0.1, 0.5) (Ren et al. 2017). The Iverson bracket (u≥ 1) is
defined to be 1 if u≥ 1 and 0 otherwise. To balance the two loss func-
tions, the value of hyper-parameter λ was first determined to be 1
(Ren et al. 2017) and the rationality of the adopted value was verified
with parameter analysis.

VGG16-Net Architecture of the CNNs

To improve computation efficiency, RPN and Fast R-CNN are thus
expected when sharing the same architecture of CNN. There are a
number of well-known architectures for CNN, including VGG16-net,
ZF-Net, GoogleNet, and Microsoft ResNet-152 (Cha et al. 2018). In
the present study, the VGG16-net was adopted as it can achieve a
good balance between computation efficiency as well as detection ac-
curacy. The VGG16-net is composed of 13 weighted CONV layers,

Fig. 4. Example of the region proposal of specimen surface under the
stress level of 50 MPa.

Fig. 3. Illustration of the overlap of the representative bounding box.

Fig. 5. Overall architecture of the Fast R-CNN.
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five MPLs, three weighted FC layers and a soft-max layer.
More details about the original VGG16-net can be found in Cha
et al. (2018).

To put forward a Faster R-CNN-based approach for detecting
different stresses, the original architecture of VGG16-net was mod-
ified to coordinate with that of the RPN as well as that of the Fast
R-CNN. For the modified RPN illustrated in Fig. 6, a sliding
CONV, followed by an FC layer (feature vector) with a depth of
512-dimension, is adopted to substitute the final MPL as well as
the three FC layers of the primal VGG16-net, and soft-max and re-
gression layers are adopted to substitute the soft-max layer of the

primal VGG16-net. Table 1 lists the detailed information on the
VGG16-net-based RPN.

For the modified Fast R-CNN shown in Fig. 7, a RoI pool-
ing layer was used for substituting the final MPL of the primal
VGG16-net. To avoid overfitting, dropout layers, whose
threshold value was adopted to be 0.5, were inserted between
each of the three FC layers of the primal VGG16-net. To guar-
antee the compatibility with the number of classifications under
consideration, the depth of the final FC layer was changed into
seven for six stress levels and background. The last soft-max
layer was substituted with soft-max and regression layers.

Table 1. Detailed information on the VGG16-net-based RPN’s layer

Layer number Type Depth Filter size Stride Layer number Type Depth Filter size Stride

1 CR 64 3 × 3 1 11 CR 512 3× 3 1
2 CR 64 3 × 3 1 12 CR 512 3× 3 1
3 MP 64 2 × 2 2 13 CR 512 3× 3 1
4 CR 128 3 × 3 1 14 MP 512 2× 2 2
5 CR 128 3 × 3 1 15 CR 512 3× 3 1
6 MP 128 2 × 2 2 16 CR 512 3× 3 1
7 CR 256 3 × 3 1 17 CR 512 3× 3 1
8 CR 256 3 × 3 1 18 Sliding CR 512 — —
9 CR 256 3 × 3 1 19 FC 512 — —
10 MP 256 2 × 2 2 20 Soft-max & Regressor — — —

Note: CR=CONV+ReLU; and MP=max pooling.

Fig. 6. Modified architectures of VGG16-net for RPN.

Fig. 7. Modified architectures of VGG16-net for Fast R-CNN.
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Table 2 lists the detailed information on the VGG16-net-based
Fast R-CNN.

Faster R-CNN Combined from the RPN and Fast R-CNN

Fig. 8 illustrates the overall architecture of the Faster R-CNN. As
observed from Fig. 8, the Faster R-CNN is actually a combination
of the RPN and Fast R-CNN that share the same nine-layer CNNs
for the extraction of image features. Faster R-CNN can be trained
efficiently through a four-step alternating training technique (Ren
et al. 2017). More details about the Faster R-CNN training process
can be found from Ren et al. (2017).

Dataset Preparation and Implementation Details

Dataset Preparation

To detect the stress of structures using deep learning methods, data-
sets need to be prepared in advance for the purpose of training,

validating, and testing the deep learning model. The datasets
were created through a three-step process as demonstrated in Fig. 9.

The first step was to prepare steel specimens. Twenty polished
steel specimens with dimensions of 150 × 10 × 10 mm were fabri-
cated, as shown on the left of Fig. 9. The type of steel is Q345q
with a yield strength of 345 MPa, which is commonly used in
civil structures.

The second step was to capture the images of steel specimens
under different stresses. As shown in the middle of Fig. 9, a uniax-
ial compression experiment was conducted for each steel specimen
with an electromechanical universal testing machine that has a ca-
pacity of 30 kN. The machine can be held on at any specific load
within its capacity for a certain time and can give real-time display
of the applied force. A loading scheme was programmed, in which
the load was applied from 0 to 25 kN with an interval of 5 kN and at
each load step the machine was held on for a certain time to capture
images. As the cross-sectional area of these specimens is known,
the stresses in each specimen can be calculated under the applied
forces. At each of the six stress level (namely, from 0 to
250 MPa with an interval of 50 MPa), images of the microstructure

Table 2. Detailed information on the VGG16-net-based Fast R-CNN’s layer

Layer number Type Depth Filter size Stride Layer number Type Depth Filter size Stride

1 CR 64 3 × 3 1 13 CR 512 3× 3 1
2 CR 64 3 × 3 1 14 MP 512 2× 2 2
3 MP 64 2 × 2 2 15 CR 512 3× 3 1
4 CR 128 3 × 3 1 16 CR 512 3× 3 1
5 CR 128 3 × 3 1 17 CR 512 3× 3 1
6 MP 128 2 × 2 2 18 RoI pooling 512 — —
7 CR 256 3 × 3 1 19 FR 4,096 — —
8 CR 256 3 × 3 1 20 Dropout — — —
9 CR 256 3 × 3 1 21 FR 4,096 — —
10 MP 256 2 × 2 2 22 Dropout — — —
11 CR 512 3 × 3 1 23 FR 7 — —
12 CR 512 3 × 3 1 24 Soft-max & Regressor — — —

Note: CR=CONV+ReLU; MP=max pooling; and FR=FC+ReLU.

Fig. 8. Overall architecture of the Faster R-CNN.
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features of steel specimens were captured with 2-megapixel
(1,920 × 1,080) portable digital microscopes. As only a 2.3- ×
1.3-mm region can be photographed by the portable digital micro-
scope, the captured images have a resolution of about 21,000 dots
per in. (dpi). To improve the robustness of detection, different
lighting conditions were adopted and images were taken by dif-
ferent photographers with different portable digital microscopes
with the same specification. Under each stress level, 221 original
images were obtained from all specimens. After dataset augmen-
tation through horizontal mirror, vertical mirror, and 180-degree
rotation, the total number of images increases to 5,304 (namely,
221 × 6 × 4). It should be noted that based on the Euler’s formula
the critical buckling stress of the specimens was calculated to be
752 MPa, which means that buckling will not occur during the
compression experiment.

The final step was to establish datasets using images obtained
from the previous step. Since a supervised deep learning model
was used, labeled information of images was required for training.
Among the 5,304 images obtained from the previous step, 60 im-
ages (10 for each stress) were randomly picked for examining the
robustness of the proposed approach while the remaining 5,244 im-
ages were labeled with stresses under which they were taken, as il-
lustrated on the right of Fig. 9. Specifically, if an image was taken
for a specimen under a stress of 50 MPa, then it was labeled as
50 MPa. To generate a testing dataset, 20% of images were ran-
domly chosen from all these labeled images and, in the meantime,
the remaining 80% of labeled images were utilized for the genera-
tion of the training and validation datasets.

Implementation Details

The open-source Faster R-CNN package was used to implement all
experiments with a computer [Central Processing Unit (CPU): Intel
i7-8700k @3.20 GHz, 16 GB DDR4 memory; and Graphic Pro-
cessing Units (GPU): 11 GB memory ZOTAC X-GMING GeForce
RTX 2080Ti] through the GPU mode based on a Caffe framework.
The software configuration is: Ubuntu 16.04.6, python 2.7,
CUDA10.0, and CUDNN 7.5. For the Faster R-CNN, to achieve
a good balance between calculation efficiency and accuracy in

the present study, images utilized to train and test the RPN and
Fast R-CNN are rescaled such that the maximum sizes of its shorter
and longer sides are less than 600 and 1,000 pixels, respectively,
and the rationality of the adopted image size was verified with pa-
rameter analysis. The initial weights of the CNN layers as well as
the FC layers are adopted from zero-mean Gaussian distribution
with standard deviations of 0.001 and 0.01, respectively. The val-
ues of the learning rate, the momentum, the weight decay as well as
the mini-batch size are adopted to be 0.001, 0.9, 0.0005, and 128,
respectively, for training both the RPN and the Fast R-CNN. Nine
anchor scales are determined through different combinations of
three scales {1282, 2562, 5122} and three aspect ratios {1:1, 1:2,
2:1}. Anchors that cross image boundaries were discarded during
the training process as cross-boundary anchors will result in no
convergence. In addition, a value of 0.7 was adopted for the non-
maximum suppression to decrease the number of OPs highly over-
lapping with each other. More details on parameter initialization of
the Faster R-CNN can be found from Ren et al. (2017).

Average precision (AP) is usually employed for performance eval-
uation of an object detector (Girshick 2015; Girshick et al. 2014), and
is obtained by calculating the area under the precision–recall curve
(Everingham et al. 2010). For a specific class, precision is theoreti-
cally computed to be the percentage of correct detections to the
total detections returned by the algorithm while recall is theoretically
computed to be the percentage of correct detections to the total
ground truth instances under consideration. The term mean AP
(mAP), as the name implies, is the mean of computed APs for all clas-
ses under consideration. Readers can find more information on the
precision–recall curve and AP from Everingham et al. (2010).

Experiments

Training, Validation, and Testing Results

The Faster R-CNN was first trained with initial parameters follow-
ing the four-step training algorithm introduced previously and its
performance was evaluated with the testing dataset. In the GPU
mode, the time required to train the network for 210,000 iterations

Fig. 9. Process to prepare dataset.
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and to evaluate a 1,920 × 1,080-pixel image is about 12.56 h and
0.08 s, respectively. The variation of training loss with the number
of iterations is shown in Fig. 10, from which it can be seen that the
training loss decreases with the increase of iterations and tends to
be stable when iterations reach around 200,000. With the model
trained for 200,000 iterations, the precision–recall curve for the
testing dataset was obtained, as plotted in Fig. 11, based on
which the APs and mAP were calculated. From Fig. 11, it can be
seen that the APs for the detection of the six stresses (namely,
from 0 to 250 MPa with an interval of 50 MPa) are 0.812, 0.872,
0.758, 0.898, 0.902, and 0.907, respectively, and the corresponding
mAP is 0.858. Similarly, the APs and mAPs calculated from mod-
els trained for different iterations were plotted against the number
of iterations in Fig. 12. As expected, the APs and mAPs both in-
crease as the number of iterations increases and also tend to stabi-
lize after 200,000 iterations.

Parameter Optimization

As Ren et al. (2017) acknowledged that the initial parameters of
Faster R-CNN selected in their study may not be appropriate for
a specific dataset, parameter optimization for Faster R-CNN was
conducted to achieve higher accuracy of stress detection. Three im-
portant parameters, including the anchor scale, the mini-batch size
as well as the learning rate, were found to have a significant impact
on the performance of Faster R-CNN (Ren et al. 2017). Therefore,
the effects of these parameters on stress detection accuracy were in-
vestigated in this study. A total of 45 combinations of three groups
of anchor scales, five mini-batch sizes, and three learning rates were
considered. The APs and mAPs for the test dataset were obtained
and summarized, as shown in Fig. 13 and Table 3. It should be
noted that Ren et al. (2017) labeled a RoI as the calculated class
if the probability calculated by the soft-max layer for the RoI
was 0.6 or higher.

From Fig. 13 and Table 3, it can be seen that the anchor scale,
mini-batch size, and learning rate have a coupling effect on the APs
and mAPs. The highest APs for stresses of 0, 50, 100, 150, 200, and
250 MPa are 88.20% for Case 26, 88.15% for Case 41, 97.10% for
Case 42, 94.88% for Case 42, 90.58% for Case 45, and 96.86% for
Case 38, respectively. To guarantee a rational balance among APs
for different stresses, Case 41 was chosen, which achieved the

second highest mAP of 89.67%, only slightly lower than the high-
est mAP of 89.83%. In Case 41, the APs for the six stresses,
namely, from 0 to 250 MPa with an interval of 50 MPa, are
87.46%, 88.15%, 89.53%, 91.94%, 90.06%, and 90.91%, respec-
tively. The anchor sizes as well as anchor ratios in Case 41 are
{2562, 5122, 1,0242} and {1:1, 1:2, 2:1}, respectively. The mini-
batch size and learning rate in Case 41 are 128 and 0.0005, respec-
tively. To better illustrate the learning process in Case 41, the var-
iation of training loss with the number of iterations is shown in
Fig. 14, and with the model trained for 200,000 iterations, the pre-
cision–recall curve for the testing dataset is shown in Fig. 15.
Fig. 14 demonstrates that the training of the Faster R-CNN con-
verges well under Case 41 and Fig. 15 indicates that the well-
trained model has a good performance in testing dataset. It should
be noted that the mAP of 89.67% obtained in the present study is
an acceptable level of accuracy, which can be comparable with
the crack detection accuracy of 89.3% and 90.0% obtained in
the study by Dung and Anh (2019) and Gopalakrishnan et al.
(2017), respectively.

Fig. 11. Precision–recall curve for the testing dataset with the model
trained for 200,000 iterations under initial combination of parameters.

Fig. 10. Variation of training loss with number of iterations under ini-
tial combination of parameters. Fig. 12. Variation of APs and mAPs with number of iterations.

© ASCE 04020113-7 J. Bridge Eng.

 J. Bridge Eng., 2021, 26(1): 04020113 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
E

xe
te

r 
on

 1
1/

08
/2

0.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



Fig. 13. APs for test dataset of 45 cases.

Table 3. Parameters under consideration and corresponding results for test dataset

Cases Anchor scales/Aspect ratio Mini-batch sizes Learning rate

APs (%) for different stresses (MPa)

mAP (%)0 50 100 150 200 250

1 {642, 1282, 2562} {1:1, 1:2, 2:1} 16 0.0001 86.70 85.73 82.93 84.50 88.81 90.57 86.54
2 0.0005 79.93 87.26 83.56 88.11 90.43 90.79 86.68
3 0.001 81.16 87.19 84.26 89.54 90.53 90.85 87.26
4 32 0.0001 86.92 87.19 88.65 87.82 89.83 90.15 88.43
5 0.0005 81.32 86.86 84.09 92.81 90.44 90.74 87.71
6 0.001 80.64 86.42 77.72 89.14 90.14 90.85 85.82
7 64 0.0001 69.30 63.76 57.71 68.81 82.77 89.65 72.00
8 0.0005 80.78 86.98 80.22 88.46 90.38 90.46 86.21
9 0.001 81.32 86.73 83.06 85.39 90.06 90.73 86.21
10 128 0.0001 47.09 39.28 29.14 23.02 48.15 79.92 44.43
11 0.0005 80.09 82.00 77.74 80.71 89.21 90.50 83.38
12 0.001 81.06 84.20 79.85 86.25 88.82 90.73 85.15
13 256 0.0001 40.52 30.26 20.63 20.13 39.81 70.35 36.95
14 0.0005 51.25 47.22 40.15 46.16 68.15 88.16 56.85
15 0.001 60.23 56.92 48.46 57.89 72.36 89.20 64.18
16 {1282, 2562, 5122} {1:1, 1:2, 2:1} 16 0.0001 87.03 86.40 87.80 86.41 89.67 90.73 88.01
17 0.0005 80.65 86.98 88.94 88.53 89.58 90.52 87.53
18 0.001 80.73 84.22 82.03 89.29 90.14 90.85 86.21
19 32 0.0001 87.42 85.76 88.77 86.87 90.10 96.17 89.18
20 0.0005 81.27 86.19 83.93 88.46 89.32 90.46 86.60
21 0.001 81.48 87.14 82.93 88.96 90.06 90.38 86.82
22 64 0.0001 85.70 85.80 86.08 90.15 90.24 90.73 88.12
23 0.0005 81.37 87.32 85.78 94.41 89.63 90.42 88.16
24 0.001 81.17 86.48 85.85 87.87 90.44 90.55 87.06
25 128 0.0001 66.72 54.70 49.64 59.35 77.91 88.69 66.17
26 0.0005 88.20 87.12 89.07 86.30 90.14 90.50 88.56
27 0.001 81.16 87.20 75.84 89.83 90.25 90.74 85.84
28 256 0.0001 43.65 36.95 26.90 23.83 45.40 79.80 42.80
29 0.0005 80.30 69.58 73.92 78.34 86.56 94.22 80.49
30 0.001 77.60 86.60 79.27 87.42 89.20 90.30 85.06
31 {2562, 5122, 1,0242} {1:1, 1:2, 2:1} 16 0.0001 78.55 82.71 84.90 85.47 89.83 90.68 85.36
32 0.0005 81.22 85.15 84.65 87.18 89.12 90.27 86.26
33 0.001 72.73 85.70 79.22 88.86 90.24 90.79 84.59
34 32 0.0001 79.41 85.23 85.35 87.29 90.14 90.85 86.38
35 0.0005 81.32 85.19 86.49 87.96 90.34 90.41 86.95
36 0.001 81.53 85.09 83.70 89.31 90.01 90.62 86.71
37 64 0.0001 84.20 83.65 78.87 85.33 89.75 90.91 85.45
38 0.0005 81.37 85.68 84.27 94.65 89.71 96.86 88.76
39 0.001 81.76 83.56 88.11 88.30 90.10 90.79 87.10
40 128 0.0001 62.90 49.79 37.09 45.20 72.16 89.60 59.46
41 0.0005 87.46 88.15 89.53 91.94 90.06 90.91 89.67
42 0.001 81.76 84.26 97.10 94.88 90.15 90.85 89.83
43 256 0.0001 43.86 36.98 20.18 28.71 43.52 78.99 42.04
44 0.0005 81.12 87.19 81.52 88.03 90.06 90.63 86.42
45 0.001 81.82 83.63 89.92 88.42 90.58 90.85 87.54
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Testing New Images

To prove the robustness of this proposed method, the model trained
in Case 41 was adopted to detect the stress of 60 unlabeled images
(ten for each stress level) reserved in the dataset preparation stage.
The testing results for new images were summarized in Table 4,
from which it can be observed that the number of correct detections
for the six stresses, namely, from 0 to 250 MPa with an interval of
50 MPa, are 8, 8, 10, 10, 9, and 8, respectively. The corresponding
APs for the stresses of 0, 50, 100, 150, 200, and 250 MPa are 80%,
80%, 100%, 100%, 90%, and 80%, respectively, and the mAP is
88.33%. This indicates that the precision rates achieved for new im-
ages are comparable with that produced in Case 41. Fig. 16 illus-
trates the details on the stress detection of 200 MPa, from which
it can be observed that one picture taken at the stress of 200 MPa
was wrongly detected as 150 MPa with an accuracy of 0.99. In
other words, though the trained model detected the stress of this
picture to be 150 MPa with an accuracy of 0.99 based on the picture

features, this detection is wrong. To overcome this situation and
achieve reliable detection results in practice, it is suggested that if
more pictures are captured around the point of interest and detected
with the trained model, and the actual stress of the point is most
likely to be the most frequently detected stress. It should be
noted that these 60 unlabeled images were taken under different
conditions as mentioned in the section on dataset preparation, indi-
cating that the precision rate is rarely affected by these factors.

Discussion

It is well known that the traditional sensor-based method is not able
to detect the absolute stress of structure components due to some
unknown stresses having already been produced before the install-
ment of sensors. Therefore, only the stress increment can be de-
tected with traditional sensors. The proposed deep learning
method provides a new idea to detect the absolute stress, which es-
tablishes the relationship between the microstructure features of
structures and the absolute stress experienced by the structure com-
ponents through the model training based on the prepared dataset.
The well-trained model can then be used to detect the absolute
stress of other structure components made of the same material.

The results presented in the previous section have proven that
the Faster R-CNN-based deep learning method has the capacity
to learn and detect microstructure feature differences of steel speci-
mens under six different stress levels. In reality, the stress to be de-
tected may not be exactly the same as one of those used to train the
model. Therefore, the system will likely identify the training stress
value that is closest to the actual stress as the true stress value. To
narrow the gap between the actual stress and the closest training
stress value, one effective way is to augment the number of sam-
ples to train the model and therefore reduce the identification error.
In addition, images should be taken at an angle that is perpendic-
ular to the direction of the normal stress to be detected for good
quality. Further, the surface of the structure component to be de-
tected needs to be cleaned in case of rust and corrosion. Covers,
if any, need to be removed. It should be noted that the microstruc-
ture features of different materials are not the same and the actual
stress experienced by the structure components are also different
from the stresses considered in the study. Therefore, new models
need to be trained for new materials. The procedures to implement
such a deep learning framework for stress detection are summar-
ized as follows:
1. Prepare enough specimens under different stress levels and

make sure that the specimens can cover the range of stresses
to be detected and can ensure the target accuracy.

2. Obtain good-quality images of the specimens and label these
images.

3. Choose an appropriate deep learning network and train it with
the images obtained from the previous step; validate the effi-
ciency of the trained model with new images not used in
training.

Fig. 14. Variation of training loss with number of iterations under op-
timal combination of parameters.

Table 4. Summary of testing results for new images.

Stresses
(MPa)

Number
of images

Number of
correct detection Aps (%) mAP (%)

0 10 8 80 88.33
50 10 8 80
100 10 10 100
150 10 10 100
200 10 9 90
250 10 8 80

Fig. 15. Precision–recall curve for the testing dataset with the model
trained for 200,000 iterations under optimal combination of parameters.
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4. Obtain the images of the structure component to be detected and
use the trained model to detect the stress.
It should be noted that improving the quality of images and in-

creasing the number of images utilized to train and validate the
model will enhance the performance of the model.

Conclusions

Traditional methods for stress detection suffer from drawbacks
such as only being capable of obtaining stress increments instead
of absolute stress, and causing structural damage. A deep learning
framework for total stress detection of steel components is pro-
posed according to the Faster R-CNN, and the robustness of this
proposed method is demonstrated with an example. Uniaxial com-
pression experiments of steel specimens were conducted and im-
ages of microstructure features of the specimens under six
different stress levels (namely, from 0 to 250 MPa with an interval
of 50 MPa) were captured under different conditions with portable
digital microscopes. The captured images have a resolution of
about 21,000 dpi. Among the 5,304 images used in this study,
5,244 images were used for training (40%), validating (40%),
and testing (20%) of the Faster R-CNN, and the remaining 60 im-
ages (10 for each stress level) were used for examining the robust-
ness of the model as new images.

The effects of three important parameters, including the anchor
scale, batch size, and learning rate, on the accuracy of stress detec-
tion were investigated and an optimal combination of these param-
eters for training the Faster R-CNNwas obtained. Under an optimal
combination of these parameters, the maximum APs achieved by
the trained Faster R-CNN for stress detection of 0, 50, 100, 150,
200, and 250 MPa are 87.46%, 88.15%, 89.53%, 91.94%,
90.06%, and 90.91%, respectively, and the corresponding mAP
reaches 89.67%. The proposed method provides a new idea to ob-
tain the absolute stress of structure components that is difficult to
obtain with the conventional sensor-based method. The results
from the study also indicate that the Faster R-CNN-based deep
learning method is capable of detecting the difference not only in
macroscopic objects but also in microstructure features.

It should be noted that the microstructure features of different
materials are usually different even under the same stress level.

This means that specific models will be needed for different ma-
terials. In future studies, attempts will be made on structural com-
ponents made of other materials, such as concrete, that are
commonly used in civil structures to examine the applicability
and accuracy of this presented approach. In addition, it should
also be noted that from the perspective of civil engineering it is
desirable to detect an arbitrary stress rather than detect it to be
the closest labeled stress. To achieve this goal, using the Euclid-
ean loss function to replace the soft-max function at the last layer
of the Faster R-CNN may be a possible solution, but more efforts
are needed in future research work.

Data Availability Statement

Some data, models, or code generated or used during the study are
available from the corresponding author by request, including the
datasets and the modified Faster R-CNN.
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