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A B S T R A C T   

The absolute stress of steel components is a key parameter in the construction and service of steel structures. 
Traditional stress testing methods have drawbacks of high cost and low accuracy. A new method based on deep 
learning and ultrasonic technique is proposed to obtain the absolute stress of steel components with different 
thicknesses. Firstly, ultrasonic signals of steel components under different stress levels were collected and used to 
build datasets. Secondly, the optimal architecture of one-dimensional convolutional neural networks (CNNs) for 
stress identification of steel components was determined. Finally, parameters of the network with the optimal 
architecture were optimized and used to identify the absolute stress of the unknown test dataset. The results 
show that the average stress identification error for the unknown test dataset is 3.83%. The proposed method can 
overcome the drawbacks of conventional techniques and provide good references for stress identification of steel 
components in practical engineering.   

1. Introduction 

In recent decades, steel structures have been widely used in modern 
construction due to its high strength, light weight, good seismic per
formance, and recyclability. Obtaining absolute stress in steel compo
nents is very important for assessing the safety, estimating the remaining 
life, and determining the reinforcement and renovation schedule of the 
steel structures [1]. Nondestructive testing methods have been widely 
used to detect the stress of steel structures, which will not cause damage 
to the structure. Nondestructive testing methods mainly include elec
trical detection (resistive strain gauge [2] and vibrating wire strain 
gauge [3]), X-ray diffraction [4], magnetic detection (Magnetic Bar
khausen Noise [5] and metal magnetic memory testing [6]), and ultra
sonic method [7]. However, the electrical detection method can only 
detect the stress increment of structures but not the absolute stress of the 
structure. The magnetic detection method can only be used for the 
identification of stress in ferromagnetic materials. The X-ray diffraction 
method requires expensive equipment and a severe detection environ
ment. The ultrasonic method can measure the surface stress and internal 
stress of structures, and the required measuring instruments are portable 
and inexpensive. Therefore, the ultrasonic method has a broad prospect 

in the field of nondestructive testing. 
Actually, in 1953, Hughes and Kelly [8] proposed the acousto

elasticity theory for isotropic materials and established the relationship 
between the propagation speed of ultrasound waves and stresses in 
materials. In 1959, Benson and Raelson [9] proposed a new method to 
determine the uniaxial stress in isotropic materials using polarized 
transverse acoustic waves, and introduced the concept of “acoustoelastic 
effect”. In 1973, Nelson N. Hsu [10] designed a new technique for stress 
identification based on ultrasonic waves. Based on the acoustoelasticity 
theory, the ultrasonic signal characteristics are different when the steel 
component is under different stress levels, which makes it possible to use 
ultrasonic waves to identify the absolute stress of steel components. 
Based on the characteristics of wave propagation, the ultrasonic waves 
can be divided into five categories, including the shear wave, longitu
dinal wave, surface wave, critical refracted longitudinal wave (Lcr 
wave), and guided wave. The utilization of longitudinal wave and Lcr 
wave for absolute stress detection usually needs to obtain the ultrasonic 
characteristic parameters of the zero-stress state in advance, which is 
sometimes difficult to achieve in actual situations. Surface wave cannot 
be utilized to accurately detect the internal stress in steel components 
due to its poor penetration ability. The guided wave can propagate a 
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long distance with little attenuation, but it has complex dispersion 
characteristics which make the stress detection operation difficult and 
often highly depend on senior technical engineers for data analysis. A 
shear wave is a waveform whose oscillations are vertical to the direction 
of the wave’s propagation, and the acoustic anisotropy of the material is 
related to the shear-wave polarization direction. The ultrasonic shear 
wave will decompose into two separated wave components when 
perpendicularly emitting to the stress surface, and the shear-wave 
components parallel to the stress and perpendicular to the stress have 
different wave velocities, which is called the shear-wave birefringence 
effect [11]. It was found that the velocity difference between the two 
separated wave components of the shear wave is proportional to the 
magnitude of stress and can be used to measure the stress [12]. There
fore, the ultrasonic shear wave was selected for absolute stress identi
fication of steel components based on the phenomenon of the ultrasonic 
shear-wave birefringence. 

Based on the ultrasonic technique, some scholars conducted lots of 
studies on structure stress detection. In 2016, Li et al. [13] used the 
acoustic time-of-flight method (TOF) to identify the absolute axial stress 
of steel members and compared the results to those obtained from the 
strain gauge method. Later, he [14] derived the relationship between the 
axial absolute stress and the amplitude spectrum characteristics of steel 
components based on the ultrasonic shear-wave amplitude spectrum 
and found that the error between the calculated stress and the true stress 
was less than 5%. In 2018, He et al. [15] obtained the absolute stress 
distribution and stress extremes of steel components based on the crit
ical refracted longitudinal wave (Lcr wave). Subsequently, he also 
compared the performance of the Lcr wave-based TOF method with the 
ultrasonic shear-wave amplitude spectrum method for the identification 
of steel stress and found that the amplitude spectrum method was less 
affected by high-frequency noise than the TOF method [16]. It should be 
noted that the stress identification methods proposed in the above study 
were applied only for steel components with a single thickness rather 
than those with different thicknesses, which may limit the application of 
the above methods. 

With the rapid development of deep learning, plenty of scholars used 
the CNN to classify the response signals (acoustic emission signals, vi
bration signals, etc.) or images of structures, to better identify damages 
of structures. Zhang et al. [17] combined the CNN and acoustic emission 
to identify the damage of steel rails. Li et al. [18] used the synchronous 
compression wavelet transform and multi-branch CNN to classify the 
acoustic emission signals of steel rails, and adopted the Bayesian opti
mization algorithm to determine the network hyperparameters. Based 
on the vibration signals, Chen et al. [19] used the CNN to identify the 
damage of gearboxes, and Kim and Choi [20] combined the signal seg
mentation techniques and CNN to realize the diagnosis of gear faults. 
Based on the microscopic features of steel component surface, Wang 
et al. [21] realized the classification of six different absolute stresses of 
steel components with the Faster R-CNN, which provided a new 
perspective for the absolute stress identification of steel members. Wu 
et al. [22] used a one-dimensional CNN (1-D CNN) to classify the vi
bration signals of oil pipelines and compared it with a two-dimensional 
CNN to demonstrate the superiority of 1-D CNN. Zhang et al. [23] 
directly input the raw acceleration signal of a steel beam into a 1-D CNN 
to realize the classification of structure states. Eren et al. [24] achieved 
the classification of bearing faults based on the vibration signal of an 
electric motor through a 1-D CNN and found that the 1-D CNN could 
enhance the computational efficiency without reducing the accuracy. As 
mentioned above, the CNNs have been widely used for signal processing 
to realize structural damage detection, among which the 1-D CNN is 
especially good at classifying response signals of structures. However, 
few studies are focusing on stress identification of steel components 
based on the 1-D CNN and ultrasonic method. 

In the present study, a low-cost, high-accuracy, and easy-to-operate 
method is proposed for absolute stress identification of steel compo
nents with different thicknesses based on the advantages of deep 

learning and the ultrasonic technique. Firstly, the ultrasonic signals of 
steel components under different stress levels were collected in the 
laboratory through the uniaxial compression test to establish ultrasonic 
signal datasets. The training and validation datasets consist of ultrasonic 
signals obtained under ten stress levels ranging from 0 to 300 MPa, and 
the test dataset consists of ultrasonic signals obtained under nine 
different stress levels of 14, 30, 52, 74, 96, 142, 196, 260, and 306 MPa, 
respectively. Secondly, three 1-D CNN architectures were designed, 
trained and tested with the prepared datasets and the optimal archi
tecture was determined for stress identification of steel components. 
Finally, the parameters of the network with the optimal architecture 
were optimized and then used to identify the absolute stress of the test 
dataset and the results show that the proposed method has good 
robustness in identifying the absolute stresses of steel components with 
different thicknesses. 

The rest of the study is organized as follows. The design of the one- 
dimensional CNN network is described in Section 2. Section 3 de
scribes the details on the laboratory experiment, dataset preparation, 
determination and optimization of the 1-D CNN model. In Section 4, the 
conclusions of the study are drawn and future directions for research are 
outlined. 

2. One-dimensional CNN for stress identification 

2.1. Architecture design of the one-dimensional CNN 

The CNN is a representative algorithm of deep learning and is widely 
used in computer vision, natural language processing, and structural 
damage detection [25]. Compared to deep neural networks (DNNs), the 
sparse connectivity and weight sharing operations of the CNN can 
significantly reduce the number of parameters and thus accelerate the 
process of training. The pooling layer of CNN can also preserve features 
and prevent over-fitting [26]. The 1-D CNN inherits the advantages of 
CNN and excels in handling 1-D time series data. Three 1-D CNNs with 
different architectures, as shown in Table 1, were designed to process 
the ultrasonic signal collected in the study to determine the optimal 

Table 1 
Three designed architectures of 1-D CNNs for stress identification.  

Type of layer Kernel 
information 

Shadow Medium Deep 

Conv1D_1 Kernel number 16 16 16  
Kernel size 64 64 64 

Maxpooling1D_1 Kernel size 2 2 2 
Conv1D_2 Kernel number 32 32 32  

Kernel size 3 3 3 
Maxpooling1D_2 Kernel size 2 2 2 
Conv1D_3 Kernel number 64 64 64  

Kernel size 3- 3 3 
Maxpooling1D_3 Kernel size 2 2 2 
Conv1D_4 Kernel number 128 128 128  

Kernel size 3 3 3 
Maxpooling1D_4 Kernel size 2 2 2 
Conv1D_5 Kernel number – 256 256  

Kernel size  3 3 
Maxpooling1D_5 Kernel size – 2 2 
Conv1D_6 Kernel number – 256 256  

Kernel size  3 3 
Maxpooling1D_6 Kernel size – 2 2 
Conv1D_7 Kernel number – – 256  

Kernel size   3 
Maxpooling1D_7 Kernel size – – 2 
Conv1D_8 Kernel number – – 256  

Kernel size   3 
Maxpooling1D_8 Kernel size – – 2 
GlobalAverage- 

Pooling1D 
– Yes Yes Yes 

Fully Connected layer Number of nodes 64 – 128 
LinearRegression Number of nodes 1 1 1 
Number of parameters  41,841 329,201 755,697  
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model for stress identification of steel components. The designed 1-D 
CNNs are mainly comprised of the convolutional layers, pooling 
layers, activation layers, and fully connected layers whose functions are 
introduced below. 

2.1.1. Convolutional layer 
The convolutional layer is used to extract features from input signals. 

There are multiple convolutional kernels in a 1-D convolutional layer, 
and different convolutional kernels extract different features of the input 
signal. Weight sharing is used in the 1-D convolutional layer, which can 
reduce the number of network parameters and make the network 
converge faster. The 1-D convolutional layer is computed with Eq. (1): 

xl
j = f

(
∑N

i=1
xl− 1

i ⋅kl
ij + bl

j

)

(1)  

where xl
j is the jth feature map of the lth layer, N denotes the number of 

input feature maps, f(⋅) denotes the activation function, ● denotes the 
convolution operation, kl

ij denotes the element of a trainable convolution 
kernel, and bl

j denotes the jth threshold of the lth layer. 
Fig. 1 shows an example of the one-dimensional convolution oper

ation with a convolution kernel size of 3 × 1. The input signal is 
multiplied by the weights in the convolution window, and the product is 
summed and a threshold b is added to obtain the output value. In the 
example, the characteristic value, y4, is calculated in the following way: 
y4 = (ω1x4 + ω2x5 + ω3x6). 

2.1.2. Pooling layer 
Pooling layer can shorten the length of the input signal, accentuate 

the signal features and enhance computation efficiency. Pooling layer 
can also improve spatial invariance to some degree, including the scale 
invariance, deformation invariance, and translation invariance [27]. 
The pooling layer includes two operations: the max-pooling and average 

pooling. The max-pooling outputs the largest parameter in the default 
window and the average pooling outputs the mean of the parameters in 
the default window. 

The pooling layer can also solve the overfitting problem of networks 
as well. Fig. 2 shows the operation of the 1-D max-pooling with an input 
feature map size of 8 × 1, a pooling window size of 2 × 1, and a step 
length of 2. The largest value in each window is selected as the output 
and the size of the output feature map is 4 × 1. 

2.1.3. Activation function 
The ReLU activation function is adopted in the study to accelerate 

convergence and avoid overfitting, as shown in Eq. (2): 

f (x) = max(0, x) (2)  

2.1.4. Fully connected layer 
The fully connected layer is a vital component of the 1-D CNN. It is 

usually implemented at the end of the network along with a softmax or 
linear regression function to output the prediction results. Each node in 
the fully connected layer is connected to all nodes of its previous layer, 
which implies that each node receives all information from the previous 
convolutional and pooling layers. This means that the final prediction is 
based on the entire input signal, not just the output of some convolu
tional or pooling layers [28]. 

2.2. Loss function 

The loss function is used to calculate the difference between the true 
value and the predicted value of the network and it is crucial to select a 
suitable loss function for the model to converge fast. Two commonly 
used loss functions, including the mean square error (MSE) and mean 
absolute error (MAE), are compared in the study, and the formula is 
shown in Eq. (3) and Eq. (4), respectively. 

Fig. 1. Illustration of the 1-D convolution operation.  

Fig. 2. Illustration of the 1-D max-pooling operation.  
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MSE =
1
n
∑n

i=1
(yi

p − yi
a)

2 (3)  

MAE =
1
n

∑n

i=1

⃒
⃒
⃒yi

p − yi
a

⃒
⃒
⃒ (4)  

where yi
p is the predicted stress, yi

a is the actual stress, and n is the 
number of ultrasonic samples. 

2.3. Optimizer 

The common optimization algorithms used for training the CNN 
models include the RMSProp and Adam. The RMSProp was proposed 
mainly to solve the problem of decreasing learning rate in the AdaGrad 
algorithm [29], and the gradient update rule of the RMSProp algorithm 
is as follows: 

st = γst− 1 +(1 − γ)g2
t (5)  

xt = xt− 1 −
η
̅̅̅̅̅̅̅̅̅̅̅̅
st + ε

√ ⊙ gt (6)  

where η is the learning rate, usually adopting a value of 0.001, and ε is a 
constant (e.g., 10-6) used to maintain numerical stability, γ is defaulted 

to be 0.9, st is the state variable of the RMSProp algorithm, and gt is the 
gradient of the RMSProp algorithm. 

The Adam algorithm [30], which is simple to implement and requires 
very little memory, makes use of the advantages of the AdaGrad algo
rithm to handle sparse gradients and the RMSProp algorithm to handle 
non-smooth targets. Unlike the RMSProp algorithm, the Adam algorithm 
uses a bias correction method to make the gradient converge to the 
correct direction at a very fast rate. The update process can be simply 
expressed as follows: 

mt+1 = αmt +(1 − α)Δxt (7)  

vt+1 = βvt+1 +(1 − β)(Δxt)
2 (8)  

Δxt+1 = − lr
mt+1
̅̅̅̅̅̅̅̅vt+1

√
+ ε (9)  

where α = 0.9 and β = 0.999 are the default exponential decay rates 
for the first-order moment and second-order moment estimation. 
ε = 10− 8 is the default value used to maintain numerical stability 
during the optimization process. lr represents the learning rate during 
the training process. In the study, these two optimization algorithms are 
applied to train the 1-D CNN separately and their performances are 
compared. 

3. Experimental studies 

In the part, the equipment and steel components used in the exper
iment are described first, and followed is the introduction on the details 
of experiments, and finally, the procedures for stress identification of 
steel components and the corresponding results are introduced. 

3.1. Equipment and steel components 

To accurately collect the ultrasonic signals of steel components under 
different stress levels, a loading and measurement system was designed 
in the present study. Fig. 3 and Fig. 4 show the overall diagram and 
equipment connection diagram of the loading and measurement system, 
respectively. As can be seen from Fig. 3, the system consists of four parts, 
including the universal testing machine (DWD-2000, Sichuan Dexiang 
Kechuang Instrument Co., Ltd.), the ultrasonic generator (JSR DDR300), 
the shear-wave transceiver probe (Olympus V156, center frequency: 
5 MHz), and the oscilloscope (Tektronix MDO34, bandwidth: 200 MHz, 
sampling rate: 2.5 GS/s). In addition, the probe was coupled to the 

Fig. 3. Stress measurement system.  

Fig. 4. Connection of instruments.  
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surface of the steel component through the Olympus SWC-2 2 oz type 
ultrasound coupler to ensure a good connection between them and 
reduce the wear of the probe as it moves. 

Fig. 4 shows the process of collecting ultrasonic signals from steel 
components under different stresses. The ultrasonic generator emits 
pulse signals shunting into the transceiver probe to generate a pure 
transverse wave. The pure transverse wave propagates along the thick
ness direction of the steel component and is then reflected from the back 
of the component. The echo signal is collected by the same probe and 
transmitted to the ultrasonic generator and displayed on the 
oscilloscope. 

The steel components were made of 45# steel with a yield strength of 
345 MPa. Five steel components with different sizes were used in the 
experiment, as shown in Table 2. The experiment was carried out at 
room temperature (14 ◦C) and the variation of temperature was not 
considered during the experiment. 

3.2. Implementation details 

3.2.1. Computation configuration and evaluation index 
The experiment was conducted with a computer (Central Processing 

Unit (CPU): Intel i5-9600 k @3.20 GHz, Graphics Processing Unit (GPU): 

NVIDIA GeForce RTX 3060 with 12 GB memory) under the GPU mode 
based on the TensorFlow framework. The software configuration is the 
Windows 10 system installed with Python 3.7.4, Tensorfow-gpu 2.4.1 
and Keras 2.4.3. The initial parameters of each layer of the 1-D CNN 
were randomly initialized by the Glorot uniform distribution [31]. 

The relative error (RE) is defined in Eq. (10). The mean relative error 
(MRE) is the average of the REs, as shown in Eq. (11). 

RE =

⃒
⃒yp − ya

⃒
⃒

ya
× 100% (10)  

MRE =

∑n
i=1REi

n
(11)  

where yp is the predicted stress of each test sample, ya is the actual stress 
of each test sample, REi is the relative error of the ith test sample, and n is 
the number of test samples. 

The stress identification process for steel components is shown in 
Fig. 5, where j denotes the number of current training epoch and N 
denotes the overall number of preset epochs. 

3.2.2. Determination of shear-wave polarization angle 
As shown in Fig. 6(a), the ultrasonic shear-wave probe is fixed on the 

steel component, and the contact point of the probe and the steel 
component is adopted as the origin to establish the Cartesian coordinate 
system, in which the polarization angle is the angle between the po
larization direction of the ultrasonic shear wave and the x-axis, and the 
propagation direction of the ultrasonic shear wave is the y-axial 
direction. 

Euclidean distance is often used to measure the similarity between 
signals [32], which is also adopted in the present study to measure the 
similarity between two ultrasonic signals obtained under different stress 
levels. Assuming that p1 = (x11, x12, x13, ..., x1n) and p2 = (x21, x22, x23, ..

., x2n) are two ultrasonic signals obtained under different stress levels in 
the time domain, the Euclidean distance d between the two signals can 
be calculated with Eq. (12). 

d =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(x1i − x2i)

2

√

(12) 

Usually, a larger Euclidean distance between two ultrasonic signals 
indicates a bigger difference between them and vice versa. Therefore, an 
optimal shear-wave polarization angle can be determined under the 
condition that the Euclidean distances between ultrasonic signals ob
tained under different stress levels achieve bigger values. 

In the present study, the procedures to determine the optimal shear- 
wave polarization angle are summarized as follows. Firstly, the ultra
sonic shear-wave probe was fixed on the surface of a steel component 
with the polarization angle of 0◦ and five ultrasonic signals were 
collected at each of the eight stress levels ranging from 0 to 140 MPa 
with an interval of 20 MPa. Fig. 7 illustrates one of the collected ultra
sonic signals. Then, one ultrasonic sample was obtained by averaging 
the five ultrasonic signals collected at each stress level and the Euclidean 
distance between every two of the eight samples was calculated. A total 
of 28 Euclidean distances were obtained at the polarization angle of 0◦, 
as listed in Table 3, in which 3.74 MPa represents the Euclidean distance 
between the two ultrasonic samples obtained at the stress level of 0 and 
20 MPa, respectively. The total Euclidean distance corresponding to the 
polarization angle of 0◦ was obtained by summing these 28 Euclidean 
distances. Finally, the polarization angle was adjusted from 0◦ to 90◦

with an interval of 15◦ and at each polarization angle, the above two 
steps were conducted to obtain the total Euclidean distance corre
sponding to each of the polarization angles under consideration, as 
shown in Table 4. It can be observed from Table 3 that the total 
Euclidean distance achieves the largest value at the polarization angle of 
45◦, indicating that the difference between the ultrasonic signals ob
tained under different stress levels is the most distinguishable at the 

Table 2 
Size and amount of steel components.  

Steel component Size (mm) Amount 

B 240 × 25 × 16 1 
C 240 × 25 × 18 1 
D 240 × 25 × 20 1 
E 240 × 25 × 22 1 
F 240 × 25 × 24 1  

Fig. 5. Flowchart of the proposed methodology for stress identification.  
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Fig. 6. Illustration of ultrasonic shear-wave polarization angle (θ), (a) Cartesian coordinate system schematic diagram, (b) shear-wave polarization angle.  

Fig. 7. Illustration of the collected ultrasonic signal.  

Table 3 
Twenty-eight Euclidean distances at the polarization angle of 0◦ (unit: MPa).  

Stress (MPa) 20 40 60 80 100 120 140 

0  3.74  4.15  8.28  8.83  9.67  10.62  11.76 
20   0.98  4.86  5.46  6.34  7.34  8.58 
40    4.52  5.07  5.90  6.89  8.15 
60     0.91  1.69  2.70  4.04 
80      1.14  2.15  3.59 
100       1.10  2.60 
120        1.70  

Table 4 
Total Euclidean distances obtained under seven considered polarization angles.  

Polarization angle (◦) 0 15 30 45 60 75 90 

Total Euclidean distance (MPa)  142.75  123.90  177.44  613.86  511.93  367.39  253.53  

Fig. 8. Illustration of five steel components under consideration.  
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polarization angle of 45◦. Therefore, the shear-wave polarization angle 
was taken as 45◦ in the present study, as shown in Fig. 6(b). 

3.3. Stress identification of steel components 

3.3.1. Dataset preparation 
To identify the stress of steel components based on the deep learning 

algorithm, an ultrasonic signal dataset needs to be prepared in advance. 
The preparation of the ultrasonic signal dataset includes three steps. 

The first step is the preparation of steel components. Five steel 
components with different thicknesses were fabricated and denoted with 
B, C, D, E and F in order, as shown in Fig. 8. The surfaces of the five 
specimens were polished to guarantee a good connection between the 
probe and steel components. Three different points on the surface of 
each steel component were selected to collect the ultrasonic signals to 
build the training, validation and test datasets. 

In the second step, the training and validation datasets were estab
lished. A universal testing machine with a loading range of 200 kN was 
used to conduct uniaxial compression tests in the laboratory, as shown in 
Fig. 3. Ten compressive stresses ranging from 0 to 300 MPa (0, 10, 20, 
40, 60, 80, 120, 160, 220 and 300 MPa) were applied to the prepared 
steel components and the ultrasonic signals of the steel components 
under each stress level were collected after the loading was stable. Under 
each stress level, 20 ultrasonic signals were collected at each point and 
each signal has a size of 3000 × 1 with a sampling frequency of 2.5 GS/s, 
as shown in Fig. 7. Considering the uneven stress at the two ends of the 
steel component, all ultrasonic signals were collected within the area far 
away from the two ends of the steel component, as shown in Fig. 9. A 
total of 3000 ultrasonic samples (20 × 3 × 5 × 10) were collected from 
all the considered steel components under ten stress levels, which were 
then divided into the training and validation datasets according to the 
ratio of 4:1. Therefore, the number of ultrasonic samples in the training 
and validation datasets were 2400 and 600, respectively. It should be 
noted that the yield strength of 45# steel is 345 MPa, which means that 
the steel components will not yield during the uniaxial compression test. 
It should also be noted that according to Euler’s formula, the critical 
buckling stress of the steel component was calculated to be 1,142 MPa, 
which indicates that the steel component will not buckle during the 
uniaxial compression test. 

The third step is the establishment of the test dataset, which would 
be used to evaluate the performance of the trained 1-D CNN. Nine 
different stresses (including 14, 30, 52, 74, 96, 142, 196, 260 and 
306 MPa) were applied to the steel components through the uniaxial 
compression test and the corresponding ultrasonic signals were 
collected to establish the test dataset, in which each test sample was 
obtained by averaging ten ultrasonic signals to improve the signal-to- 
noise ratio [33]. Under each stress level, 20 ultrasonic signals were 
collected at each position of the five steel components under consider
ation. Thus, a total of 270 ultrasonic samples (20/10 × 3 × 5 × 9) were 
obtained for the test dataset. 

3.3.2. Determination of the optimal 1-D CNN architecture for stress 
identification of steel components 

The three designed networks were trained, validated, and tested, 
respectively, using the ultrasonic datasets of steel components obtained 
in the previous section with the same hyperparameters (loss function: 

MSE, optimizer: Adam, batch size = 8, epoch = 2000). The AE and 
training time of the three networks for stress identification of steel 
components are compared and the comparison results are shown in 
Table 5. It can be seen from Table 5 that the medium 1-D CNN can make 
a better balance between the stress identification accuracy and the 
computation efficiency and was thus adopted for the following analysis. 

3.3.3. Parameter optimization 
The loss function, optimizer and batch size of the network have a 

significant influence on the performance of the 1-D CNN [34]. In the 
present study, two loss functions (MSE and MAE), two optimizers (Adam 
and RMSProp), and six batch sizes (8, 16, 32, 64, 128, and 256) were 
considered and the performance of the medium 1-D CNN was investi
gated under the 24 combinations of the three hyperparameters. With the 
loss function of MSE, optimizer of Adam and batch size of 8, the varia
tion of training loss against the number of epochs is shown in Fig. 10, 
which shows that the training loss decreases sharply at first and grad
ually stabilizes when the epoch reaches around 1,200. Therefore, the 
number of epochs was taken as 1,200. 

The performance of the 1-D CNN under the 24 cases considered is 
shown in Fig. 11 and Table 6, from which it can be seen that the loss 
function, optimizer, and batch size have a coupling effect on the MREs. 
The minimum MREs for stresses of 14, 30, 52, 74, 96, 142, 196, 260 and 
306 MPa are 8.50% for Case 4, 5.79% for Case 4, 4.45% for Case 4, 

Fig. 9. Illustration of the area for ultrasonic signal collection (unit: mm).  

Table 5 
The MRE and training time of the three designed 1-D CNNs for stress identifi
cation of steel components.  

Designed 1-D CNNs MRE (%) Training time (s/epoch) 

Shadow  8.11  1.25 
Medium  6.96  1.73 
Deep  12.74  2.59  

Fig. 10. Variation of training loss against the number of epochs under 
initial parameters. 

L. Deng et al.                                                                                                                                                                                                                                    



Measurement 194 (2022) 110868

8

2.21% for Case 4, 3.59% for Case 16, 2.37% for Case 16, 2.46% for Case 
4, 2.32% for Case 4 and 0.85% for Case 6, respectively. Case 4 was 
chosen as the optimal model which achieved the lowest MRE of 3.83% 
for all the test samples under consideration. The loss function, optimizer 
and batch size in Case 4 are MSE, Adam and 64, respectively. It should 
be noted that the traditional ultrasonic shear wave-based methods can 
only detect the absolute stress of steel components with a single thick
ness with a MRE of 5% or less. If these methods were used to detect the 
absolute stress of steel components with another different thickness, the 
theoretical formula needs to be recalibrated using components with the 
same thickness and the new formula can only be used to identify the 
stress of components with this same thickness. However, the proposed 
method can handle steel components with different thicknesses while it 
only needs to train the model once. This indicates that the proposed 
method has better applicability than the traditional ultrasonic shear 
wave-based method while achieving the same level of accuracy under 
the same circumstances. 

The predicted and actual stresses of the test samples in Case 4 are 

shown in Fig. 12 and the MREs of test samples under each stress level are 
shown in Fig. 13, which shows that the MRE generally decreases from 
8.50% to 1.71% as the stress increases from 14 to 306 MPa. It can be 
observed from Fig. 13 and Table 6 that the predicted MRE of the model 
for identification of 14 MPa in the test samples is significantly higher 
than that of other stresses in the test samples, which is due to the fact 
that the stress value of 14 MPa is relatively small and tends to result in a 
large relative error in the calculation even if the absolute error of the 
predicted stress is small. It can also be observed from Fig. 12 that the 
predicted stress of most test samples of 306 MPa is lower than their 
actual stress, as they are beyond the stress range of the training samples 
(from 0 to 300 MPa). The results show that the proposed method has 
good robustness for stress identification of steel components and that a 
smaller MRE can be obtained when the steel components experience 
larger stress. 

Fig. 11. MREs of test dataset under 24 cases.  

Table 6 
Parameters considered and corresponding MREs for each stress level in the test dataset.  

Cases Loss function Optimizer Batch size MREs (%) for different stresses (MPa) MRE (%)     

14 30 52 74 96 142 196 260 306  

1 MSE Adam 8  14.09  13.88  6.28  3.75  6.94  5.52  4.84  5.94  1.00  7.00 
2   16  15.40  8.67  6.05  4.36  5.66  3.02  3.36  5.21  2.29  6.07 
3   32  9.28  8.74  5.62  5.07  5.13  3.48  2.98  3.90  2.86  5.32 
4   64  8.50  5.79  4.45  2.21  4.23  2.80  2.46  2.32  1.71  3.83 
5   128  10.94  8.31  4.97  4.01  4.67  2.84  3.45  3.43  2.48  5.09 
6   256  16.52  10.94  4.74  3.42  3.91  2.96  3.49  3.16  0.85  5.56 
7  RMSProp 8  17.91  15.15  7.76  4.62  6.08  5.02  5.96  6.45  1.26  7.80 
8   16  17.59  10.77  8.18  5.45  7.02  5.38  6.53  7.58  1.52  7.82 
9   32  13.31  10.86  7.17  5.58  5.11  3.39  4.54  5.00  1.54  6.35 
10   64  25.60  16.85  9.55  5.71  7.28  4.71  4.65  4.95  2.89  9.20 
11   128  12.33  7.46  8.08  4.37  6.01  3.54  3.64  4.83  2.84  5.92 
12   256  16.35  12.39  6.60  4.47  3.88  4.42  5.71  4.74  1.32  6.75 
13 MAE Adam 8  14.91  12.39  8.21  4.49  8.66  6.51  6.08  5.54  2.22  7.79 
14   16  16.35  12.07  8.94  4.45  7.01  4.09  4.51  5.53  1.63  7.23 
15   32  14.58  7.61  5.91  3.56  3.61  3.28  4.25  6.07  1.10  5.61 
16   64  15.76  8.53  5.84  3.70  3.59  2.37  3.38  6.19  2.15  5.82 
17   128  18.73  11.95  7.10  4.89  4.65  3.65  3.71  4.22  1.29  6.71 
18   256  16.56  11.23  5.01  4.15  4.90  3.00  2.78  5.43  1.88  6.20 
19  RMSProp 8  18.99  15.00  7.69  4.33  7.55  4.48  5.48  9.23  1.49  8.34 
20   16  14.65  13.84  8.59  4.44  9.07  5.71  4.89  5.90  2.70  7.82 
21   32  14.37  13.43  6.39  6.42  6.23  5.46  5.10  4.52  1.16  7.08 
22   64  14.21  14.51  8.19  4.65  7.46  5.74  5.63  6.50  3.72  7.90 
23   128  16.60  14.69  6.69  4.84  7.14  4.69  5.04  5.08  3.63  7.59 
24   256  22.77  15.14  12.16  7.51  8.04  6.05  4.85  7.16  5.50  9.96  
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4. Conclusions 

A new approach is proposed for stress identification of steel com
ponents with different thicknesses based on the deep learning and ul
trasonic method in the present study. Firstly, uniaxial compression tests 
were conducted on five steel components with different thicknesses. 
Three thousand ultrasonic signals of steel components were collected 
under ten compressive stresses (0, 10, 20, 40, 60, 80, 120, 160, 220 and 
300 MPa) and used to prepare the training and validation datasets. Two 
hundred and seventy ultrasonic samples of steel components were ob
tained under nine different compressive stresses (14, 30, 52, 74, 96, 142, 
196, 260 and 306 MPa) and used to prepare the test dataset. Secondly, 
three 1-D CNN models with different architectures were designed, 
trained and tested with the prepared datasets and the optimal archi
tecture for stress identification of steel components was determined. 
Finally, the parameters of the 1-D CNN model with the optimal archi
tecture were then optimized and verified with the test dataset. The re
sults showed that the 1-D CNN-based deep learning model can be used to 
establish the relationship between the characteristics of ultrasonic sig
nals and the absolute stresses experienced by steel components with 
different thicknesses. The following conclusions can be drawn from the 

study:  

1. The 1-D CNN with six convolutional layers is the optimal model that 
can achieve a satisfactory balance between the stress identification 
accuracy and computational efficiency.  

2. The proposed optimal 1-D CNN model can accurately predict the 
absolute stress of steel components with different thicknesses, and 
the mean relative error is 3.83% for all the test samples under 
consideration, which provides a good reference for stress detection of 
steel structures.  

3. For absolute stress identification of steel components, the proposed 
optimal 1-D CNN model tends to achieve lower relative error as the 
steel components experience larger stress. 

In practical engineering, structural steel components often work in 
complex environmental conditions and the influences of temperature, 
coupling medium, surface condition of components on the detection 
accuracy should also be investigated in the future. 
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[25] Y.-J. Cha, W. Choi, O. Büyüköztürk, Deep learning-based crack damage detection 
using convolutional neural networks, Comput.-Aided Civ. Infrastruct. Eng. 32 (5) 
(2017) 361–378. 

[26] M.G. Ragab, S.J. Abdulkadir, N. Aziz, Q. Al-Tashi, Y. Alyousifi, H. Alhussian, 
A. Alqushaibi, A novel one-dimensional CNN with exponential adaptive gradients 
for air pollution index prediction, Sustainability 12 (23) (2020) 10090, https://doi. 
org/10.3390/su122310090. 

[27] X. Zhao, J.S. Casals, B. Li, et al., Classification of epileptic iEEG signals by CNN and 
data augmentation, in: IEEE International Conference on Acoustics, Speech and 
Signal Processing (ICASSP) 2020, pp.926-930. 

[28] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, 
J. Cai, T. Chen, Recent advances in convolutional neural networks, Pattern Recogn. 
77 (2018) 354–377. 

[29] T. Tieleman, G. Hinton, Lecture 6.5-rmsprop: Divide the gradient by a running 
average of its recent magnitude, 2012, pp. 26-31. 

[30] P. KD, J. B, Adam: a method for stochastic optimization, 2014, arXiv:1412.6980. 
[31] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward 

neural networks, in: Proceedings of the thirteenth international conference on 
artificial intelligence and statistics 2010, pp. 249-256. 

[32] J. Yu, J. Amores, N. Sebe, et al., A new study on distance metrics as similarity 
measurement, in: IEEE International Conference on Multimedia and Expo. 2006, 
pp.533-536. 

[33] H.J. Lim, H. Sohn, Online stress monitoring technique based on Lamb-wave 
measurements and a convolutional neural network under static and dynamic 
loadings, Exp. Mech. 60 (2) (2020) 171–179, https://doi.org/10.1007/s11340- 
019-00546-8. 

[34] E. Karaaslan, U. Bagci, F.N. Catbas, Attention-guided analysis of infrastructure 
damage with semi-supervised deep learning, Autom. Constr. 125 (2021) 103634, 
https://doi.org/10.1016/j.autcon.2021.103634. 

L. Deng et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.measurement.2018.03.022
https://doi.org/10.1002/stc.2348
https://doi.org/10.1177/1475921720922797
https://doi.org/10.1155/2015/390134
https://doi.org/10.1155/2015/390134
https://doi.org/10.1177/1475921718805683
https://doi.org/10.1061/(ASCE)BE.1943-5592.0001655
https://doi.org/10.1109/JLT.2019.2923839
https://doi.org/10.1109/JLT.2019.2923839
http://refhub.elsevier.com/S0263-2241(22)00154-3/h0115
http://refhub.elsevier.com/S0263-2241(22)00154-3/h0115
http://refhub.elsevier.com/S0263-2241(22)00154-3/h0115
https://doi.org/10.1155/2017/8617315
http://refhub.elsevier.com/S0263-2241(22)00154-3/h0125
http://refhub.elsevier.com/S0263-2241(22)00154-3/h0125
http://refhub.elsevier.com/S0263-2241(22)00154-3/h0125
https://doi.org/10.3390/su122310090
https://doi.org/10.3390/su122310090
http://refhub.elsevier.com/S0263-2241(22)00154-3/h0140
http://refhub.elsevier.com/S0263-2241(22)00154-3/h0140
http://refhub.elsevier.com/S0263-2241(22)00154-3/h0140
https://doi.org/10.1007/s11340-019-00546-8
https://doi.org/10.1007/s11340-019-00546-8
https://doi.org/10.1016/j.autcon.2021.103634

	Uniaxial stress identification of steel components based on one dimensional-CNN and ultrasonic method
	1 Introduction
	2 One-dimensional CNN for stress identification
	2.1 Architecture design of the one-dimensional CNN
	2.1.1 Convolutional layer
	2.1.2 Pooling layer
	2.1.3 Activation function
	2.1.4 Fully connected layer

	2.2 Loss function
	2.3 Optimizer

	3 Experimental studies
	3.1 Equipment and steel components
	3.2 Implementation details
	3.2.1 Computation configuration and evaluation index
	3.2.2 Determination of shear-wave polarization angle

	3.3 Stress identification of steel components
	3.3.1 Dataset preparation
	3.3.2 Determination of the optimal 1-D CNN architecture for stress identification of steel components
	3.3.3 Parameter optimization


	4 Conclusions
	CRediT authorship contribution statement

	Declaration of Competing Interest
	References


