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In this study, an analytical model is proposed to measure the through-thickness axisymmetric radial residual
stress. Firstly, the rigorous analytical solution for the strain of a plate with a hole subjected to the through-
thickness axisymmetric radial stress is found based on the general solution for a homogeneous isotropic
elastic solid. It is assumed that the through-thickness axisymmetric radial residual stress can be expanded
into the Maclaurin series. Then, the reverse procedure is proposed to determine the coefficients of the series
by minimizing the predicted and measured surface radial strains with hole drilling. The proposed model is
validated by finite element method (FEM) for a few typical distribution types. The influence of individual
terms of the series on the surface radial strain is investigated, and the results show that the high order term
results in a small strain value. The model is able to predict the residual stresses by peening as well as those
with linear, bi-linear, quad-linear, and sinusoidal distributions. Moreover, a method to measure the resultant
force and moment per unit hole circumference is proposed.

1. Introduction

Residual stresses are generated in the material manufacture process,
due to uneven deformation resulted from inhomogeneous heating,
phase change, and plastic deformation. Residual stresses have signif-
icant practical implications for the component performance, including
stiffness, stability, fracture, and fatigue [1-4]. Therefore, many studies
have been conducted to evaluate the residual stresses of workpieces in
the research field of manufacturing.

The techniques used for residual stress measurement can be cat-
egorized into destructive and non-destructive methods according to
the different measurement principles. For destructive methods, the
residual stress is evaluated by monitoring the mechanical strain relax-
ation [5] through the principle of elastic mechanics. There are several
classic destructive methods including the hole drilling, sectioning, and
ring-core. Since the hole drilling method is relatively simple, semi-
destructive, and economical, it has become one of the most common
destructive methods [6-8]. The American Society for Testing Materials
(ASTM) issued a standard for the hole drilling method [9]. From the
standard, the residual stress in a finite depth can be measured by the
incremental hole drilling method. However, the released interior strain
by the hole drilling is relatively small and FEM is needed to determine
the calibrated coefficients [10]. In order to improve the measuring
accuracy, the ring-core method was developed with an increased strain
release in the middle of the ring-core region [11]. Nevertheless, it is

* Corresponding author.

more destructive and less convenient for practical implementation. To
determine the residual stress along the thickness, the sectioning method
comprised of longitudinal sectioning and transversal sectioning was
established, which is suitable for uniaxial stress measurement [12-14].
However, this method only gives the average stress in the thickness
range and is fully destructive.

To prevent the material from being damaged, non-destructive test-
ing methods were developed, including X-ray diffraction method
(XRD), neutron diffraction method, ultrasonic method, et al. XRD is
one of the most widely used non-destructive methods. Based on the
Bragg equation, the residual stress is calculated by measuring the
lattice strain. Although XRD can provide high precision and localized
characteristics of measurements, the measured residual stress is limited
to the surface residual stress [15-17]. Compared with XRD, neutron
diffraction has better penetration ability but the instrument is very ex-
pensive [18]. Based on the phenomenon of acoustic birefringence, the
ultrasonic method is applicable to measuring the residual stress inside
the material but it is sensitive to the microstructures and defects [3].

It can be seen that a lot of efforts have been spent on measuring
the through-thickness residual stress. Nowadays, a thin layer removal
technique is often used to expose the interior of the material for
applying the available measurement methods [19,20]. However, the
removal procedure may be time-consuming and the variation of the
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residual stress on the layer thickness is still unknown. It is necessary to
develop a measurement method with high efficiency, accuracy, and low
cost. Owing to the development of non-contact displacement measure-
ment methods, optical alternatives to the use of strain gauges become
possible [21]. The main optical alternatives include holographic inter-
ferometry [22,23], electronic speckle pattern interferometry [24,25],
and DIC (digital image correlation) [26]. Subsequently, the measured
surface strain field near the drilling hole may be utilized to evaluate
the through-thickness residual stress.

The non-uniform residual stresses near the surface of a thick mate-
rial can be measured using the hole-drilling strain gauge method [9].
The stress profile is assumed as a staircase shape and FEM is needed
to determinate the calibration constants. However, this method may
not be able to measure the stresses along the whole thickness of the
plate. In this paper, an analytical model is developed to make it possible
to measure the through-thickness axisymmetric radial residual stress
with hole drilling. Firstly, the rigorous analytical solution is derived
for the strain of a plate with a hole subjected to the through-thickness
axisymmetric radial stress. Followed by the analytical solution, the
reverse procedure is established to measure the stress by minimizing
the predicted and measured surface radial strains. The surface radial
strains at the specific locations can be obtained using DIC. The proposed
model is validated by FEM for a few typical types of distribution. The
measurements for the residual stresses by peening as well as those with
linear, bi-linear, quad-linear, and sinusoidal distributions are discussed.
Moreover, a method for measuring the resultant force and moment per
unit hole circumference is proposed.

2. The model

Fig. 1 shows the geometry of the model, where a small hole with
a diameter 2r is drilled in an infinite plate. The linear elastic, homo-
geneous, and isotropic plate has a thickness of 24, shear modulus of
G, and Poisson’s ratio of v. The Cartesian coordinate system xoyz and
cylindrical coordinate system rofz are shown in Fig. 1. It is assumed
that there are only axisymmetric residual stresses varying along the
plate thickness.

DIC technique provides a good option for the measurement of full-
field displacement by matching the subsets between the original and
deformed images. Subsequently, the strain field is retrieved from the
difference of the displacement vectors. DIC was applied to measure
the surface strain field with hole drilling, and the maximum mean and
standard deviation of the noise were estimated as —6.8 [pm/m] and
42.7 [pm/m], respectively [27]. The measured strain results are heavily
affected by the parameters used in calculation, e.g., the subset size,
the grid step, and the strain window size due to surface fitting func-
tions. The trade-off between the low strain noise and better-resolved
strain gradients can be achieved by selecting a proper strain window
size [28]. Therefore, the surface radial strains at the given locations
can be obtained according to the measured strain field after the hole
drilling. The measured radial strains on the top and bottom surfaces
of the plate are denoted by ¢,, and ¢,,, respectively. Since there are
no stresses on the hole, the strains ¢,, and ¢,, are considered to be
introduced by the axisymmetric radial stress 0,,(2), which has the
same magnitude but opposite direction to the original axisymmetric
radial residual stress. The relationship between the axisymmetric radial
stress o,y(z) and the surface radial strains needs to be established for
the reverse procedure. Since the geometry and the stress boundary
conditions are axisymmetric, the problem is an axisymmetric one.
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Fig. 1. The model for the measurement of the through-thickness axisymmetric radial
residual stress.

Referring to the general solution for a homogeneous isotropic elastic
solid mentioned by Green [29], the solutions for the current problem

can be expressed as follows considering the axial symmetry.
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where ¢, ¢, and y are the potential functions; 7 =3 —4v.
Besides, the aforementioned potential functions ¢, ¢, and y should
satisfy Laplace’s equation as
1o 0> 9
——+—=+— (0., 0)=0 4
<rar o2 azz>((ﬂ¢}r) 4
Since any function can be expressed by the superposition of the even
functions and the odd functions, the solutions of the above potential

functions can be decomposed into the even solutions and odd solutions
that meet the boundary conditions on the top and bottom surfaces.
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3. The analytical solution
3.1. The even solutions of the potential functions

For convenience, the following dimensionless parameters are intro-
duced

-z _r ]
= P = 5)
Using the method of separation of variables for Eq. (4), one of the

even solution for the function ¢ is

m=1,2,3,... (6)

@o0 = Ko(a,,p) cos(@,, ), @, =mn,

where K() is the modified Bessel function of zero order of the second
kind.

According to Eq. (1), the shear stress 7,, introduced by ¢, is zero
on the surfaces of { = +1. The normal stress o is

0z _ 2K 7
26 = "% o(@,,p) cos(a,,$) 2

To cancel o, on the surfaces of { = +1 without introducing shear
stress 7,, on the surfaces, the solutions of the types B and C are found
as

Po1= D, CunoPoltt,p) cosh(u,d) (8a)
n=0,1.2,...

do1 = Z Cm1 Po(tt,p) cosh(u,, &) (8b)
n=0,12,...

where Py(u,p) is defined as
Jl(unp)
Y (u,p)

where J;() and Y;() are the Bessel functions of the ith order of the first
kind and second kind, respectively.

Py(typ) = Jou,p) Yo(u,p) ©

The constant u, in the above equation is the nth root of the following
equation
Jy(u,pp)

Y, Guypg) 00 =0 1o

Jolu,p1) —

where p, is a constant much larger than p,.
The functions Py(u,p) are orthogonal on the interval [p, p;] with the
weight p. Hence, Ky(«,,p) and pK,(a,,p) can be expressed by Py(u,p) as

0 ©

Ko(ayp) = Z Ay Po(uyp),  pKj(ay,p) = Z by Py, p) an
n=0,1,2,... n=0,1,2,...

where the constants q,,, and b,,, are
2 [plu,,KO(ampl)Pl (unp1) + ﬂoamKl(amPo)Po(unﬂo)]
" (a2 +u2) [P%PI (u,p1)? — p(Z)PO(unpO)zl
_ Hovsnan Koo Prwnpy) = potty Ky @) Pottypo)]
(o2 +12)" [2 Py, )2 = PPty
2ﬂ%unK1(amP1)P1 (u,py) + 2po Po(u,pg) [PoamKo(amﬂo) + 2K1(amﬂo)]
(ap, +u3) o} Prwap1)? = o Po(atypo)?]

a

(12)

mn

The constants c,,,, and ¢, can be determined through the condi-
tion of zero stresses on the surfaces ¢ = +1. From Egs. (1), (2), (7), (8),
and (11), the following can be obtained

Conno SIND U, + €,y (sinhu, + 2u, coshu,) =0 (13a)
2
Conno COS U, + €y (2, sinhu, — coshu,) = (=1)" u—';amn

n

(13b)
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Solving Eq. (13), gives

(-D"a2a,,,(sinhu, + 2u, coshu,)

u2(2u,, + sinh 2u,)

A (-1)"'a2a,, sinhu,
s Ol = T
u2(2u,, + sinh 2u,)

14

Cmn0 =

Therefore, the final forms for the functions ¢ and ¢, which produce
zero stresses on the surfaces are

@y = Ky(a,,p) cos(a,,{) + 2 Cuno Po(u, p) cosh(u, &)

n=0,1,2,... (15)

S}

bo=" 2, Cpn Po(u,p)cosh(u,)

n=0,1.2,...
Similar to the solution for the functions ¢, and ¢, another inde-
pendent solution for the functions ¢, ¢, and y is

11 = Koy(a,,p) cos(a,,&)

@ = d o Po(u, p) cosh(u, )
n=0,lz,2,.., (16)

br=" Y dypu Pou,p)coshu,f)
n=0,12,...
where the constants d,,,, and d,,,, are

2(=1)"a3 b,,,(sinhu, + 2u, coshu,)
mn0 =

u2(2u,, + sinh 2u,) ’
2(-1)"*adp

m°mn

u2(2u,, + sinh 2u,)

17
sinhu, an

mnl —

From Egs. (15) and (16), it can be seen that when m = 0 the
solutions are invalid. To establish the complete even solutions of the
potential functions, the following functions ¢, and ¢, satisfying the
boundary conditions are required

@y =¢,=Inp 18)
3.2. The odd solutions of the potential functions

One of the odd solution for the function ¢ satisfying Eq. (4) can be
expressed by

@50 = Ko(Bnp) sin(B,), By = %ﬂ’

From Eq. (1), the shear stress 7,, vanishes on the surfaces of { = +1.
The normal stress o, is

m=1,2,3,... (19)

22 2 = — 2 Ky () Sin(Bn) 20)
2G m T O%m "

To cancel the normal stress without giving the shear stress on the
surfaces ¢ = +1, the following functions @y, and ¢, are introduced

(s
vy = Z ¢ o Pouy,p) sinh(u,¢)
n:O,;Z... (21)
by = D iy Pou,p)sinh(u,0)
n=0,1,2,...

Similar to Eq. (11), Ky(f,p) and pK,(B,p) can be expressed by
Py(u,p) as

) [

KoBup) = Y. @ Pow,p), pK\(Bup) = Y, bh Rowp)  (22)
n=0,12,... n=0,1.2,...
where the constants a}, and b7 can be obtained by replacing «,, with
B, in the expressions of a,,, and b,,, in Eq. (12), respectively.
The constants 7 ~and c*  can be obtained by the condition of zero
stresses on the surfaces of { = +1. From Egs. (1), (2), (20), (21) and
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(22), the following can be obtained

¢t ocoshu, +c*  (coshu, +2u, sinhu,) =0 (23a)

ﬁ2
(2u,, coshu, — sinhu, ) = (=1y"+! = ar,
n

s

Crrm()

sinhu, + c;nl (23b)

Therefore, ¢* = and c¢* = are
mn0 mi

nl

. (D)"™'prar (coshu, +2u, sinhu,)

(-1)"B2a* coshu,
mn0 u2(sinh 2u, — 2u,)

u2(sinh 2u, — 2u,)
(24)

’ mnl

To sum up, the functions @, and ®;, which satisfy the boundary
conditions, are

@} = Ko(Bup)sin(B, )+ Y

n=0,1,2,...

C;m() Py(u,p) sinh(u,$)
(25)

0

b= mano(u,,p) sinh(u,, &)

n=0,1,2,..

With similar derivation to the functions (p(’; and ¢(*), the other inde-
pendent odd solution for the functions ¢, ¢, and y is

1 = Ko(Byp) sin(B,&)
ot = Py(u,p) sinh(u,¢)
1 n=0;2, mnO 0 (26)

o = Z d’, Py(u,p)sinh(u,¢)
1,2,...

where the constants ar * and d*

2(=1)™1 g3 b* (coshu,, + 2u,, sinhu,,)

* m-mn
mn0 2 ?
us(sinh 2u,, — 2u,)
mp3 px ! (27)
.o 2(=1)"p, b, coshu,
mal — y2(sinh 2u,, — 2u,,)

3.3. The stresses

Once the potential functions are determined, the stresses can be
calculated by Egs. (1)~(3). The stresses o,y(m, p,{), 7,,0(m,p,¢), and
og0(m, p, ) corresponding to the functions ¢, and ¢, are

[+ 0

2'0 12 = @, c08(0,, &) + z €m0 COSh(u,$) + Z €1 ¢ sinh(u, &)
n=0,1,2,... n=0,1,2,...
T o oo
2r—zoh2 =, sin(a,,{) + Z e, sinh(u,$) + z e3¢ cosh(u,{)
G n=0,12.... n=0,12....
o o (o]
ZGC(;) h* = @, cos(a,, &) + Z €4 cOsh(u, &) + Z eunsé sinh(u,$)
n=0,1,2,... n=0,1,2,...

(28)

where w,,q ~ ®,,, and e,,,o ~ e,,,5 are listed in Appendix.
The stresses o,,(m, p,{), 7,,;(m, p,{), and oy, (m, p,{) corresponding
to the functions y,, ¢, and ¢, are

2l p2 = 4,0 cos(@,d) + Z fm,,o cosh(u,¢) + Z fm,,lgsinh(ung)

26 n=0,1,2,.. n=0,1,2,.

T [s+]

2’—2}12 = At SIN@, )+ Y frp sinh(u,0) + 2 fm,,3§ cosh(u,¢)
n=0,12,... n=0,1,2,.

o, [so]
2‘2 B2 = A, cos(a,) + Z
=0,1,2.

fm,,4 cosh(u, &) + Z fm,,5§ sinh(u,¢)
n=0,1,2,.

(29)

where 4,0 ~ 4,, and f,,,0 ~ f..s are listed in Appendix.
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The stresses o,,(m, p,{), 7,.,,(m, p,{), and o4y(m, p,¢) corresponding
to the functions ¢, and y, are the plane stress solution as

Sa =46

2G

Trz2,0 _ (30)
2G

L) 1

02 p2 6)—

2 (n+ )p2

Similar to the stresses given by the even potential functions, the

stresses ajo(m,p, &), t* (m,p, &), and c 0 (m. 0, ¢) corresponding to the

rzO
functions @}, and ¢;, are

042 = o * o sin(f,,0) + Z ;jmo sinh(u,¢) + et ¢ cosh(u,{)

26 n=0,12,.. n=0,12,...
Seh=on 56,0+ Y e pcosh@, )+ Y e s sinh(w,¢)
=0,1,2 n=0,1.2,...
O_* (s [so]
26 =SB0+ Y e sinh@, )+ Y mg cosh(,{)
n=0,1.2,... n=0,1.2,..
(31)
where the coefficients o* o m2’e:m0’ejnnl’ ,e’;m4 can be obtained by

replacing «,, with f,, ¢, with ¢’ , and c,,; with ¢;
@’ ==K i(Bup)-

The stresses or(mp,0), T (m, p,{), and o, (m, p,{) given by the
functions 10 @) and ¢| are

in Eq. (A.1);

*

= X sin(B,0) + Z fmnosmh(uné’)+

n=0,1,2,.. n=t

_rl Fo1 € cosh(u, )
2G 021:2 !

T*
rzl

2G

frpcosh@,O)+ Y fr ¢ sinh(u,f)

n=0,1,2,...

[se]
W= 2% cos(Bud) + Y
n=0,1,2,...

%1 DR =2, sinB,O+ Y fhgsinh@O)+ Y fE < cosh(u,l)
2G n=0,1,2,... n=0,12,...
(32)

where the coefficients A7 . A% . f» . fr ...
replacing a,, with 8, d,...0 w1th dr o> andd,, withd;
iy = =283 0Ko(Bp) = 4BLK (Bup).

It is beneficial to represent these stresses by the Fourier expansions

. fr ., can be found by
in Eq. (A.2);

in the coordinate ¢. The required forms can be obtained by using the
following Fourier expansions

(oo
Z X o €08(a,,8) + X0

cosh(u,{) =
m=12,...
[se]
Csinh@,) = Y Xy 008(a,0) + X,
m=12,...
sinh(u,,{) = X, sin(e,,,$), ¢ cosh(u,$) = X 3 Sin(a,, &)
m=12,... m=12,..
(s o0
sinh(u,{) = X7 08in(B,0), ¢ cosh(u,$) = X;:ml sin(B,,{)
m=12,... m=1,2,.
[se]
cosh(u,{) = X:mz cos(f,$), (¢ sinh(u,l) = Z an3 cos(f,,$)
m=1.2,... m=12,.
(33)
where X, X,1, Xm0 mn3» and X o~ X*  are listed in Appendix.
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Substituting Eq. (33) into Egs. (28), (29), (31) and (32), the stresses
can be expressed in the final form as

o)
O,
2_rGOh2 = @, co8(@,,{) + 2 eXinno C08(0,C) + e X,y
n=1.2,...

T [so]
2’—ZG°hZ=a),,,1 sin(@, )+ Y. eX, sin(a,f)
n=12,...

(s
;—’(‘;hQ = Ao €OS@u0) + Y, S Xy cO8(@,0) + [ X,
n=1,2,...

[so]
Tzl . .
%h2=lm1 sin(@, )+ . f Xy sin(@,0)

=1,2,...
o . (€2
2—2h2=w;0 sin(B,0)+ Y. eX: o sin(B,0)
n=1,2,...
szO 2 s < %
Sl =) cosB )+ Y Xy, cos(Bl)
n=1.2,...
0_* o0
2—2h2=/1’;,0 sinB,0)+ Y, fX] o sin(8,0)
n=1,2,...
Tr*zO 2 * < *
Sl =y cos(Bu O+ Y X cos(B,0)
n=1,2,...
where eXn0> €Xpnt> €Xpps [ Xopnos S Xpun1> [ X s eX::mO’ eX:ml’ fX:;m()’

and fX = are listed in Appendix.
3.4. Determination of the stress coefficients

By a linear combination of the stresses in Eqgs. (30) and (34), the
complete stress solution for the current problem can be written as

[o]
o, = 2 (Ay0,0 + B0, + Ay 0+ Broy) + Agoy,
m=1.2,...
0
To= ) (AyTig+ Byt + ATl + BT ) (35)

3
I
8]

[

M

(A,000 + By0g1 + Af,,”;() + B, 05) + Ayogy

N>

m=1.2,...
where A, 4,, B,, A}, and B} are the unknown coefficients of the
stresses.
Since there are only axisymmetric radial residual stresses in the
undrilled plate, the shear stress z,,(p,, ) is zero after the hole drilling.
The radial stress 0,,() can be expanded into the Fourier series as

0, =Eg+ Y E,cos(@,O)+ Y Esin(8,0) (36)

m=1.2,... m=1.2,...

where E, E,, and E; are the coefficients of the Fourier expansion.
Hence, the stress boundary conditions on the hole are

Tr2(p0.§) =0, 06,(pp. §) = 0, () 37)

Substituting Egs. (35) and (36) into Eq. (37) and using the orthog-
onality of 1, cos(e,,¢), and sin(8,,¢) on the interval [-1, 1], it yields

Max—1 Max—1
Ag+ Y AneX,+ Y B.fX,=E,
m=12,... m=1.2,...
Max—1 Max—1
Apwro + BiAy + 2 AneXpo+ 2 B, [ X ko = Ey
m=12,... m=1,2,...
Max—1 Max—1
Ao + B+ Y AgeXp+ Y BufX =0 (38)
m=12,... m=1.2,...
Max Max
* % % 9% * % * * %
A0+ Bidi + ApeX ot Z B/ X ko = Ei
m=12,... m=12,...
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Max Max
* % P * % * * _
Ay + Bidiy + Z L Z B X =0
m=12,... m=12,...

where Max is the truncation value for m to ensure the convergence of
the solution; k = 1,2,..., Max — 1 for A;, B, E, and k = 1,2,..., Max
for AZ, B,’:, EZ

The coefficients Ay, A,,, B, A%, and B’ can be solved from Eq. (38).
Then, the stresses in the plate can be calculated using Eq. (35). Since
the normal stress o, on the surfaces { = +1 of the plate is zero, the
surface radial strain ¢,(p, +1) is calculated using Hooke’s law as

1

= %60+ [6,(p, £1) = voy(p, £1)] (39)

£.(p,x1)

4. The reverse procedure

It is assumed that the stresses are continuous and infinite differen-
tiable at any point throughout the thickness. Therefore, the radial stress
0,,(¢) may be expanded by the Maclaurin series as

0= Y L, (40)
n=0

where L, is the undetermined coefficient.

It should be noted that the first few terms is generally enough
to approach o, ({) due to the convergence of series. The series is
truncated to N in practice. The coefficient L, can be determined based
on the radial strains on the surfaces of the plate. The relationship
between the radial stress and the surface radial strains is established
in the form of matrix to conduct the reverse procedure. The constant

vector E (= [Eg, Ey, ..., Epay 1.0, ... ,0,E},E},...,E} .0, ... ,O]T) can
be calculated by the coefficient vector L (= [Ly, Ly, ..., L N]T) as
E=M,L (41)

where the matrix M, is listed in Appendix.
According to Eq. (38), the relationship between the coefficient vec-
tor of the stresses C (= [Ag, A}, ..., A By, ... Bypgyis AT, LAY

max—1-> Max’
T .
* *
By, ..., BMaX] )and E is

C=M,"'E (42)

where the matrix M, is listed in Appendix.
Substituting Eq. (35) into Eq. (39), the surface radial strain vec-
tor & (= [e,(p1, 1), 6,012, D)y 6,0y, > Dy €:(0p1 = 1), 6,(pp, =1, ...,
T
€PN, —1)] ) is calculated by C as

£ =M;C (43)

where N; and N, are the numbers of the measuring points at the top
and bottom surfaces, respectively; p,; and p,;(1 <i < Ny, 1 <j < N,)
are the dimensionless radial distances of the ith and jth measuring
points at the top and bottom surfaces, respectively; the matrix Mj is
listed in Appendix.

From Egs. (41)~(43), the relationship between L and ¢ are finally
obtained as following

£=ML (44)

where the matrix M is M3M;1M1.
For convenience, the measured surface radial strain is denoted by
T

£y (= [gmt(/)rl)s Emi(P12) s Emi (PN, ) €mp(P1)s € (Pp2): - - ’Smh(Psz)] ).
The following function is introduced to describe the difference between
the predicted and measured surface radial strains

f@L)=ML - £,)"ML - ¢,,) (45)

The predicted surface radial strain should be as close to the mea-
sured surface radial strain as possible. In other words, f(L) should take
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the stationary value. Hence, by calculating the derivative of f with
respect to L, it yields

% =2M"(ML —¢,) =0 (46)

The coefficient vector L can be solved by Eq. (46). Then, the
measured through-thickness axisymmetric radial stress o, ,,({) can be
calculated by Eq. (40). The coefficient of determination R? and root-
mean-square deviation RM SD are used to evaluate the prediction,

which are defined by
. 2
L [0 = 0]

R? =
T4 [0,00) = 030) d¢

(47a)

S [ © = orut@] e
2

where o7, is the average value of 6,,(¢) on the interval [—1, 1]. It should
be noted the prediction is close to the real one when R? approaches to
1 and RM S D is small.

RMSD = (47Db)

5. Validation

It is well known that FEM can accurately simulate the elastic behav-
iors of materials. Fig. 2 illustrates the comparison of the top surface
radial strain by the present model with that by FEM. In the figure,
the distribution of the through-thickness axisymmetric radial stress is
plotted on the subfigure. Four different distributions of the through-
thickness axisymmetric radial stress were considered to validate the
proposed model. The FEM results were obtained by the numerical
program ABAQUS as shown in Fig. 3. A linear elastic material was
assigned to the plate with Young’s modulus 210 GPa and Poisson’s ratio
0.3. The plate was simulated using eight-node 3-D solid elements with
reduced integration (C3D8R). The thickness of the plate was 0.1 m. The
radius of the hole was 0.1 m and the radius of the plate was set to ten
times the radius of the hole to reduce the influence of the boundary.
The element size at the hole edge was 0.01 m and increased from 0.01 m
at the hole edge to 0.04 m at the plate edge. The element size was
0.01 m along the plate thickness. The FEM model was partitioned in
the thickness and the axisymmetric radial stress was applied on the
partitioned segments of the hole by creating the analytical field in the
thickness.

From Fig. 2, it can be seen that the present solutions agree well with
those by FEM, indicating the good accuracy of the present model. The
slight difference between the two methods in Fig. 2(d) may originate
from the mesh and boundary conditions in FEM. From Fig. 2(a), it can
be observed that the results obtained by the present model, FEM, and
plane stress solution are very close. This indicates that the uniform
stress distribution can be evaluated based on the plane stress solution.
From Fig. 2(b), it can be found that the linear stress distributions
have negligible influence on the surface radial strain when the radial
stresses at { = 1 are the same. This indicates that for the linear stress
distribution, the radial strain on the top surface (bottom surface) is
mainly affected by the radial stress at { = 1 (¢ = —1). Inversely, the
linear distribution may be determined by measuring the surface radial
strains at the top and bottom surfaces simultaneously. Moreover, it is
observed that the radial strain decreases rapidly first and then slowly.
At distances that are three times the radius of the hole away, the strain
is less more than 15% of that at the hole edge.

Fig. 4 shows the comparison between the predicted and real distri-
butions, in which the surface radial strains for the reverse procedure
are retrieved from the post-processing of FEM, as shown in Table 1.
It can be found that the prediction and real distribution are in good
agreement, indicating the good accuracy for the reverse procedure. The
maximum deviation occurs in the parabolic distribution, which may be
caused by the mesh and boundary conditions set in FEM and the limited
series terms.
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Table 1

The surface radial strain values calculated by FEM.
p Linear Bi — linear Parabolic

€ [HE] Enp LHE] € [He] Enp LHE] € [HE] €y LHE]

1.20 29.7 13.4 20.5 4.3 14.7 14.7
1.42 21.2 9.5 14.7 3.0 10.1 10.1
1.66 15.6 7.0 10.8 2.1 6.9 6.9
1.78 13.4 6.0 9.3 1.7 5.7 5.7
1.91 11.7 5.2 8.0 1.4 4.7 4.7
2.18 8.9 4.0 6.1 1.0 3.3 3.3

6. Parametric study

For convenience, the following typical parameters will be adopted
in the subsequent analysis, including the dimensionless radius of the
hole p, = 1, Young’s modulus of the plate E, = 210 GPa, and Poisson’s
ratio v = 0.3. Since the matrix MTM determines the coefficient vector
L according to Eq. (46), the condition number of this matrix should
not be very large to ensure the stability of the solution. Fig. 5 gives
the relationship between the condition number of MTM based on the
L, norm and the measuring points spacing 4p, where the measuring
points closest to the center are located at 1.2 times the radius. The
condition number declines with the increase of the number of the
measuring points. This is understood based on the fact that higher mea-
suring redundancy leads to more accurate measurement. The condition
number rises with the increase of N or the decrease of the spacing
of the measuring points 4p. Therefore, a more stable measurement
can be achieved by choosing small N value and large 4p. Conversely,
the matrix MTM may be ill-conditioned for a very large N value or
in case of a small number of measuring points, leading to enormous
errors in the prediction. In the following analysis, the radial strains
for both the top and bottom surfaces are located at distances that are
1.2,1.4,1.6,1.8,2,2.2 times the radius away from the center of the hole,
as shown in Fig. 6.

6.1. Influence of the series term

Fig. 7 shows the contribution of the individual term of the series in
Eq. (40) to the surface radial strain, in which the values for all terms at
¢ =1 are 10 MPa. The surface radial strain decreases with the increase
of the order of the even or odd terms. This can be explained by that
the interior radial stress approaches to zero for a high order term. In
addition, the surface radial strain calculated by the adjacent even and
odd terms (e.g., the zeroth and first terms) are close to each other.
However, this is not the case for the bottom surface due to the opposite
distributions in the lower half of the plate. Hence, the adjacent terms
may be determined by measuring the top and bottom surface radial
strains simultaneously. Moreover, the surface radial strain values are
close to each other and approach zero when p > 3, implying that the
measurements beyond 3 times the radius of the hole have little sense.

6.2. Prediction of the residual stress by peening

In general, measurement errors include random errors and system-
atic errors. For DIC, the random errors are mainly caused by the image
noise while the systematic errors are mainly due to algorithms, which
can be reduced by improving the procedure, e.g. iDIC. To test the
sensitivity of the proposed mode to noise, the Gaussian noise with zero
mean value and varied standard deviations is added to the real surface
radial strains for the prediction of the residual stresses by peening.
Fig. 8 presents the predictions of the residual stress by peening, in
which the thickness is normalized to 2. There are in good agreement
with high R? and low RM S D even for the noise of a standard deviation
of 5% relative to the real strain values. The deviation increases with the
increase of the standard deviation. The maximum distinction occurs
at the turn of the distribution, which may be explained by the high
standard deviation and the limited terms of the series.
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Present, FEM, Plane stress ¢! Solid line Present, FEM
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(a) Uniform distribution (b) Linear distribution
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Fig. 2. Validation of the present model with FEM.
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Real distribution:
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Fig. 3. The FEM model. [R?=0.945, RMSD=0.209—
6.3. Prediction of the axisymmetric radial stress
-3 T T T T
In this section, the error obeying normal distribution with a stan- -1.0 -0.5 0.0 0.5 1.0

dard deviation of 2.5% (relative to the real strain values) is added to the C
surface radial strains to represent the noise. To avoid being confused
with the true measured values, the strain values adding the error are Fig. 4. The predicted distributions (N = 4).

denoted by the simulated values as shown in the subgraph. Fig. 9
shows the prediction of the axisymmetric radial stress in the linear
distribution. The predictions are very close to the real distributions. It
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Fig. 5. The relationship between the condition number of M™M and 4p.
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Fig. 6. The arrangement of the measuring points.
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Fig. 7. The influence of the individual term of the series on the surface radial strain.

can be seen that the prediction by setting N = 1 is pretty accurate. This
is because N =1 corresponds to a linear distribution.

Fig. 10 shows the prediction of the axisymmetric radial stress in
the bi-linear distribution. The first four terms (N = 3) of the series
cannot present the real distribution properly. Although there is a high
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Fig. 8. The predictions of the residual stress by peening (N =4): (a) hammer peened
5 times (initially free-stress samples) [30]; (b) shot peeing intensity 0.26 mm A for
C-1020 material cold rolled [31].
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Fig. 9. Prediction of the axisymmetric radial stress in the linear distribution.

derivation on the center between the predicted and real distributions,
it can give a similar trend using N = 3. The deviation may come from
the representation of the radial stress using the limited terms of the
series. Nevertheless, the first five or six terms (N =4 or N = 5) can be
suitable to predict the bi-linear distribution of the stress, e.g., tension
at the surfaces but compression at the center of the plate.

As for a more complex polygonal distribution, Fig. 11 shows the
prediction of the axisymmetric radial stress in the quad-linear distri-
bution. It can be seen that the first four terms (N = 3) of the series
cannot give a satisfying prediction of the stress although it presents the
variation trend of the stress along the thickness. The main reason may
be due to the fact that the derivative of the stress is not continuous at
the tip and the stress cannot be expressed by Eq. (42) properly when
N < 3. However, it can give a reasonable overall prediction by setting
N > 4 and a better result for N = 5. Thus, the terms with orders
larger than 3 have significant effects on the stress distribution. This can
be understood because for the rapid variation of the stress along the
thickness, the high order terms are important to constitute the stress.
Therefore, more terms of the series can give more accurate evaluations.
To conclude, the first six terms (N = 5) can be adopted to evaluate the
quad-linear distribution of the stress.

Fig. 12 illustrates the prediction of the axisymmetric radial stress
in the sinusoidal distribution. It can be found that the predictions
calculated by N =3 and N = 4 are both close to the real distribution.
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Fig. 11. Prediction of the axisymmetric radial stress in the quad-linear distribution.

Moreover, A satisfactory match between the prediction and the real
distribution can be achieved when N =5.

6.4. Analysis of the resultant force and moment per unit hole circumference

The total effect of the through-thickness axisymmetric radial stress
may be treated as the resultant force and the moment per unit hole
circumference acting at the center of the hole, which are defined by

1
Force = / ho, (§)dg
-1 ] (48)
Moment = / hzéaro (&)d¢
-1

The force and moment can be used to evaluate the deformation of
the plate according to the theory of plate. Figs. 13 and 14 show the
influences of the stress distributions with the same forces and moments
on the surface radial strain, respectively. In Fig. 13, the moments are
zero and the forces are the same for the five different stress distri-
butions. It can be seen that the stress distributions affect the strain
within 2.7 times the radius of the hole. In Fig. 14, the forces are zero
and moments are the same for the three different stress distributions.
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Fig. 12. Prediction of the axisymmetric radial stress in the sinusoidal distribution.
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Fig. 13. The influences of the stress distributions with the same resultant forces on
the surface radial strain.

Similar to Fig. 13, the stress distributions have great influences on
the strain within 2.5 the times the radius of the hole. From Figs. 13
and 14, it may be concluded that in order to measure the resultant
force and moment, the surface radial strains beyond 2.7 times the hole
radius need to be measured to eliminate the influence of the stress
distribution.

Since the strain beyond 2.7 times the hole radius is slightly affected
by the stress distribution, the stress along the thickness is assumed
to be linear distribution so as to conveniently evaluate the resultant
force and moment. Referring to Fig. 2(b), the surface radial strain can
be determined by the stress at the corresponding edge of the hole
according to the plane stress solution. Therefore, the stress in linear
distribution can be measured by the hole-drilling strain gauge method,
provided that the top and bottom surface radial strains beyond 2.7
times the hole radius are measured simultaneously.

7. Further discussion

Residual stresses play an important role in the stiffness, stability,
fracture, and fatigue of the component. Although the hole-drilling
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Fig. 14. The influences of the stress distributions with the same moments on the
surface radial strain.

strain gauge method has been commonly implemented, it may not be
able to measure the stresses along the whole thickness of the plate. This
paper proposes an analytical model to measure the through-thickness
axisymmetric radial residual stress with hole drilling. It should be noted
that the general in-plane principal residual stresses o,(z) and o,(z)
varying along the thickness can be expressed by ¢.(z) and 7,y(z) in the
cylinder coordinate system as

01(2) +05(2) | 01(2) — 0y(2) cos(20)

2
(49)
210~ %@ ;106

0,.(0,2) =

7,4(0,2) =

If the residual stresses are isotropic (equi-biaxial), i.e., o|(z) = 06,(2),
there is only axisymmetric radial residual stress released after the hole
drilling. Therefore, the through-thickness isotropic residual stress can
be measured according to the proposed model. The measurement of the
terms relevant to 26 needs to be further studied to establish a general
model for the measurement of the in-plane through-thickness residual
stresses. Besides, the experimental research adopting the developed
model will also be carried out in the future to investigate the influence
of the residual stresses on the mechanical properties of the component.

8. Conclusion

The analytical solution for the strain of a plate with a hole subjected
to the through-thickness axisymmetric radial stress is obtained based
on the three-dimensional elastic theory. It is assumed that the through-
thickness axisymmetric radial residual stress can be expanded into the
Maclaurin series. Then, the reverse procedure is proposed to determine
the coefficients of the series by minimizing the predicted and measured
surface radial strains with hole drilling. The model is validated by FEM
for a few typical distribution types of the axisymmetric radial stress
along the thickness. From the study, some major conclusions can be
drawn as follows

(1) More stable results can be achieved by choosing fewer terms of
the Maclaurin series and more measuring points with large spacing. The
surface radial strain decreases with the increase of the order of the even
or odd terms.

(2) The residual stress caused by peening can be predicted with the
proposed model. The first two terms of the Maclaurin series can be
used to predict linear distributions while five terms are required for
more satisfactory predictions of bi-linear, quad-linear, and sinusoidal
distributions.
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(3) The stress distributions with the same resultant forces or mo-
ments per unit hole circumference mainly affect the surface radial
strain within 2.7 times the hole radius. The force and moment can be
measured by the hole-drilling strain gauge method, provided that the
top and bottom surface radial strains beyond 2.7 times hole radius are
measured simultaneously.
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Appendix
The coefficients w,,, ~ ®,,, and e,,,o ~ e,,s in Eq. (28) are
a, K, (a,p)
@ = a,ano(amP) + %
Py (u,p)
€mn0 = _ui(cmno + 3cmnl)PO(unp) + un(cmnO + ”cmnl)l—ﬂ
PI (u /)) 2
e =2u’c —u, Py(u,p) + ——=|, o, =a*K(a,p)
mnl ntmnl nt 0\ P ml m > 1\Wm (A])
€mn2 = _uﬁ(cmno + Count )PI (unp)’ €mn3 = _2uicmnl PI (unp)
a, K, (a,p) 2 Py(u,p)
Wy = _T’ mn5 = _Zuncmnl -
Py(u,p)
Cmnd = ui(” - 3)Cman0(unp) - un(cmnO + rlcmnl) d
The coefficients A,y ~ A,,, and f,,,0 ~ funs i EqQ. (29) are
K (a,,p)
Ao = 602 Ko(@,,0) + 202 oK (a,,0) + (1 + 5)at, ——2
2 P] (unp)
fmnO = _un(dmnO + 3dmnl)P0(unp) + un(dmnO + ’/dmnl)
Py(u,p)
fmnl = 2uidmnl _unPO(unp) + Tn ) fmnS = _zuidmnl Pl(unp)
At = 20 pKo(@,,p) + 425 K (@) (A.2)
Py(u,p)
fmn2 = _uz(dmno + dmn] )Pl (an)’ fmnS = _zuﬁdmnl -
a, K (a,p)
Ama = (1= g Ko@) = (1 + 5=
Py (u,p)
fmn4 = “ﬁ(” - 3)dmnlp()(unp) - un(dmn() + ”dmnl)Tn
The coefficients X, X1, Xypo ~ X3, and X -~ X» - in Eq. (33)
are
_ sinhu, _ coshu, sinhu,
n0 — u, > nl — u, u%
2(—1)"u, sinhu,
Xomo = ——5————
u, + o
o | Uy coshu, (2 — a?)sinhu,
KX = 2(=1) 2+ a2 21202
u; +a, (us +a;)
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)m+1 a,, sinh(u,,)

an2:2( 1 2+a2

coshu,

2u, sinhu, ] (A.3)

X, =2=1)"qg -
mn3 ( ) m [u2+0(2 (uﬁ+a51)2
2(—=1)"*1y, coshu,

X*
no = 2 2
Uy + By

>

2(—1)n+ W2 — p*)coshu

X =% u, sinhu, — 2'" >

us + B us + fs
X* -2 1)m+1 B, cosh(u,)
u+ 2

x* 2(-1mtp, [sinhu B 2u,,coshun]
3= n

SR G+

The coefficients eanO, eXpnts €Xps fXnos [Xmnts [Xp eX¥
ol fX 0 and fX* = in Eq. (34) are

mn0

mnl

0
eanO = Z (emtOXnto + emtIXntl)’
1=0,1,2...

eX, = 2 (€m0 Xi0 + €1 X11)
1=012...

o
eanl = z (emt2Xnt2 + emr3Xm3)’
1=0,1,2...
©

S X o = Z (10 X0 + o1 X 1)

t=0,1,2...

s
Y, UmoXio + fun X,

t=0,1,2... (A4)

©
menl = Z (fmIZXm2 + fmt3Xm3)
1=0,1,2...

o0
* * X*
eanO - z (emIOXntO + e ml)’

1=0,1,2...
©
* *
eanl - Z (emt2Xnt2 +emt3 m‘3)
1=0,1,2...
mn() Z (fmIO ntQ + fmtl ml)’
t=0,12...
[so]
* *
menl - Z (fer nt2 + fmt3Xnt3
t=0,12...

The matrix M; in Eq. (41) is

L evae
LN cos(a )de

3/ de L ede
1 cos(a O)dg [ ¢ cos(a O)dg
I c08(@praxi A [ € cos(@pgae O)dE LA N cos(@y g OAC

M, = 0, 0, 0,
1 sing0)de [ ¢sin(g 0de L ¢V sin(p 0)de

S sinBun A [ Esin(Byg0dE SN sin(ByyO)dE
02 02 02

(A.5)

where 0, and 0, are the zero column vectors with Max — 1 and Max
elements, respectively.
The matrix M, in Eq. (42) is

1 e fX 0 0
0 M, My 0 0

M,={0 M,, My 0 0 (A.6)

g 0 My, M,

0 M My
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where eX = [eX|,eX,,...,eX e 1] and £X = [£ X\, f Xp s f X ppaxcn |5
the sub-matrices M, 4, M3, My, My, My, M, M] , M7 are
@19 +eXyg eXs1o eXpax-110
M, = eXin @9 +eXp eX Max—120
| eXimax-10  eX2max-10 Opax-10 T X pax—1Max—10
Ao+ X110 f X210 S X pMax-110
My = X120 Ao + [ X X Max-120
»leMax—IO fXZMax—lO AMax—lO + fXMax—lMax—IO
o1 +eXyy eXy eX pax-111
M.. =| X Wy +eXpy eX pax-121
2A — : : :
| eX | pax-11 eXopax—11 Oppax—11 T X Max—1Max—11
An+ X S S X Max-111
My = f X2 Ao1 + f X F X Max-121
| [ Ximax-11 [ Xomax-11 Amax—11 + [ X Max—1Max-11
[« 5 * 5
@ teXi eX3l0 eX M axio
*
M;, = eXiy @y +eX5 X rax20
* * £
| EX 1Max0 2X2Maxo Opax0 T X MaxMaxo
ot/ XTho X0 T X Maxi0
M, = lezo Ay + szzo fXMaxZO
L leMaxO f 2Max0 }'Max() +fXMaxMax0
£ * * *
) teXyy, X5 eX ot
* *
M = eXm @y, +eX221 eXMax21
24 .
* * 5
| elezm eXZMuxl Opraxt T X MaxMaxt
At o X Maxti
M = fX121 Ay + fXZZl fXMale
2B .
N
leMaxl f 2Maxl }'Maxl + fXMaxMaxl

The matrix M3 in Eq. (43) is

[ M, MA, MB; MA; MB |
M, MA, MB, MA* MB*
M - 1 M., MAy, MBy, MAt*Nl MB;*NI e
3T 26(0+v)| My, MA,  MBy,,  MA;, MB;,
M, MA,, MB,, MA* MB*
| My, MAy, MByy, MA;;N2 MBI*)NZ

tis ti>
N,,1<j < N,) are as follows

where M, MA;, MBy;, MA};, MB;,, MA,;, MBy, MA;: MB} (I < i <

M,; = 0,5(p) — voga(py)
My, = 0,5(py;) — voga(py))
MA;; = [o,0(L, p1i 1) = vogo(L, pyis D, ...

o(Max —1,p,;, 1) = vogo(Max — 1, p;, 1)]
MBy; = [0,1(1, pyis 1) = vogy (L, pyis 1, ..

o(Max —1,p,;, 1) = vog (Max — 1, p;, 1)]
MAY, = [o% (L p,;. D) = voyy (L p. D, ...

o (Max, p,;, 1) — vor (Max, py, 1)]
MB;; = [o7 (1, p,. 1) = voly (1, p, D, ...

o' (Max, p;, 1) — voly (M ax, p,i,l)]

MAy,; = [6,0(1, py;, —1) = vogo(l, pyjo =1, .



H. Liu

et al

o o(Max —1,p,;,—1) = vogy(Max — 1, p,;, —1)]

MBy; = [0,1(1, py;. —1) = vy (1, pyjs = 1), ...,
o, (Max — 1,pbj, —1)—voy (Max — 1, Ppj —1)]
MA}; = [6% (L, pyj =1) = v (1, pyj =1), ..
oro(Max, p;,—1) — VO';‘O(Max, Phjs —1)]
MBy. = [o7, (1 pyj, =1) = voy, (1, pyjs =1, ...
ol (Max, py;, 1) = vo, (Max, py;, —1)]
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