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A B S T R A C T

In this study, an analytical model is proposed to measure the through-thickness axisymmetric radial residual
stress. Firstly, the rigorous analytical solution for the strain of a plate with a hole subjected to the through-
thickness axisymmetric radial stress is found based on the general solution for a homogeneous isotropic
elastic solid. It is assumed that the through-thickness axisymmetric radial residual stress can be expanded
into the Maclaurin series. Then, the reverse procedure is proposed to determine the coefficients of the series
by minimizing the predicted and measured surface radial strains with hole drilling. The proposed model is
validated by finite element method (FEM) for a few typical distribution types. The influence of individual
terms of the series on the surface radial strain is investigated, and the results show that the high order term
results in a small strain value. The model is able to predict the residual stresses by peening as well as those
with linear, bi-linear, quad-linear, and sinusoidal distributions. Moreover, a method to measure the resultant
force and moment per unit hole circumference is proposed.
. Introduction

Residual stresses are generated in the material manufacture process,
ue to uneven deformation resulted from inhomogeneous heating,
hase change, and plastic deformation. Residual stresses have signif-
cant practical implications for the component performance, including
tiffness, stability, fracture, and fatigue [1–4]. Therefore, many studies
ave been conducted to evaluate the residual stresses of workpieces in
he research field of manufacturing.

The techniques used for residual stress measurement can be cat-
gorized into destructive and non-destructive methods according to
he different measurement principles. For destructive methods, the
esidual stress is evaluated by monitoring the mechanical strain relax-
tion [5] through the principle of elastic mechanics. There are several
lassic destructive methods including the hole drilling, sectioning, and
ing-core. Since the hole drilling method is relatively simple, semi-
estructive, and economical, it has become one of the most common
estructive methods [6–8]. The American Society for Testing Materials
ASTM) issued a standard for the hole drilling method [9]. From the
tandard, the residual stress in a finite depth can be measured by the
ncremental hole drilling method. However, the released interior strain
y the hole drilling is relatively small and FEM is needed to determine
he calibrated coefficients [10]. In order to improve the measuring
ccuracy, the ring-core method was developed with an increased strain
elease in the middle of the ring-core region [11]. Nevertheless, it is
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more destructive and less convenient for practical implementation. To
determine the residual stress along the thickness, the sectioning method
comprised of longitudinal sectioning and transversal sectioning was
established, which is suitable for uniaxial stress measurement [12–14].
However, this method only gives the average stress in the thickness
range and is fully destructive.

To prevent the material from being damaged, non-destructive test-
ing methods were developed, including X-ray diffraction method
(XRD), neutron diffraction method, ultrasonic method, et al. XRD is
one of the most widely used non-destructive methods. Based on the
Bragg equation, the residual stress is calculated by measuring the
lattice strain. Although XRD can provide high precision and localized
characteristics of measurements, the measured residual stress is limited
to the surface residual stress [15–17]. Compared with XRD, neutron
diffraction has better penetration ability but the instrument is very ex-
pensive [18]. Based on the phenomenon of acoustic birefringence, the
ultrasonic method is applicable to measuring the residual stress inside
the material but it is sensitive to the microstructures and defects [3].

It can be seen that a lot of efforts have been spent on measuring
the through-thickness residual stress. Nowadays, a thin layer removal
technique is often used to expose the interior of the material for
applying the available measurement methods [19,20]. However, the
removal procedure may be time-consuming and the variation of the
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residual stress on the layer thickness is still unknown. It is necessary to
develop a measurement method with high efficiency, accuracy, and low
cost. Owing to the development of non-contact displacement measure-
ment methods, optical alternatives to the use of strain gauges become
possible [21]. The main optical alternatives include holographic inter-
ferometry [22,23], electronic speckle pattern interferometry [24,25],
and DIC (digital image correlation) [26]. Subsequently, the measured
surface strain field near the drilling hole may be utilized to evaluate
the through-thickness residual stress.

The non-uniform residual stresses near the surface of a thick mate-
rial can be measured using the hole-drilling strain gauge method [9].
The stress profile is assumed as a staircase shape and FEM is needed
to determinate the calibration constants. However, this method may
not be able to measure the stresses along the whole thickness of the
plate. In this paper, an analytical model is developed to make it possible
to measure the through-thickness axisymmetric radial residual stress
with hole drilling. Firstly, the rigorous analytical solution is derived
for the strain of a plate with a hole subjected to the through-thickness
axisymmetric radial stress. Followed by the analytical solution, the
reverse procedure is established to measure the stress by minimizing
the predicted and measured surface radial strains. The surface radial
strains at the specific locations can be obtained using DIC. The proposed
model is validated by FEM for a few typical types of distribution. The
measurements for the residual stresses by peening as well as those with
linear, bi-linear, quad-linear, and sinusoidal distributions are discussed.
Moreover, a method for measuring the resultant force and moment per
unit hole circumference is proposed.

2. The model

Fig. 1 shows the geometry of the model, where a small hole with
a diameter 2𝑟0 is drilled in an infinite plate. The linear elastic, homo-
geneous, and isotropic plate has a thickness of 2ℎ, shear modulus of
𝐺, and Poisson’s ratio of 𝜈. The Cartesian coordinate system 𝑥𝑜𝑦𝑧 and
cylindrical coordinate system 𝑟𝑜𝜃𝑧 are shown in Fig. 1. It is assumed
that there are only axisymmetric residual stresses varying along the
plate thickness.

DIC technique provides a good option for the measurement of full-
field displacement by matching the subsets between the original and
deformed images. Subsequently, the strain field is retrieved from the
difference of the displacement vectors. DIC was applied to measure
the surface strain field with hole drilling, and the maximum mean and
standard deviation of the noise were estimated as −6.8 [μm∕m] and
42.7 [μm∕m], respectively [27]. The measured strain results are heavily
affected by the parameters used in calculation, e.g., the subset size,
the grid step, and the strain window size due to surface fitting func-
tions. The trade-off between the low strain noise and better-resolved
strain gradients can be achieved by selecting a proper strain window
size [28]. Therefore, the surface radial strains at the given locations
can be obtained according to the measured strain field after the hole
drilling. The measured radial strains on the top and bottom surfaces
of the plate are denoted by 𝜀𝑚𝑡 and 𝜀𝑚𝑏, respectively. Since there are
no stresses on the hole, the strains 𝜀𝑚𝑡 and 𝜀𝑚𝑏 are considered to be
introduced by the axisymmetric radial stress 𝜎𝑟0 (𝑧), which has the
same magnitude but opposite direction to the original axisymmetric
radial residual stress. The relationship between the axisymmetric radial
stress 𝜎𝑟0(𝑧) and the surface radial strains needs to be established for
the reverse procedure. Since the geometry and the stress boundary
conditions are axisymmetric, the problem is an axisymmetric one.
2

Fig. 1. The model for the measurement of the through-thickness axisymmetric radial
residual stress.

Referring to the general solution for a homogeneous isotropic elastic
solid mentioned by Green [29], the solutions for the current problem
can be expressed as follows considering the axial symmetry.

Solution A

𝑢𝑟 =
𝜕𝜑
𝜕𝑟

, 𝑢𝑧 =
𝜕𝜑
𝜕𝑧

𝜎𝑧
2𝐺

=
𝜕2𝜑
𝜕𝑧2

𝜏𝑟𝑧
2𝐺

=
𝜕2𝜑
𝜕𝑟𝜕𝑧

,
𝜎𝑟
2𝐺

=
𝜕2𝜑
𝜕𝑟2

𝜎𝜃
2𝐺

= −
𝜕2𝜑
𝜕𝑟2

−
𝜕2𝜑
𝜕𝑧2

(1)

Solution B

𝑢𝑟 = 𝜂
𝜕𝜙
𝜕𝑟

+ 2𝑧
𝜕2𝜙
𝜕𝑟𝜕𝑧

, 𝑢𝑧 = −𝜂
𝜕𝜙
𝜕𝑧

+ 2𝑧
𝜕2𝜙
𝜕𝑧2

𝜎𝑧
2𝐺

= −
𝜕2𝜙
𝜕𝑧2

+ 2𝑧
𝜕3𝜙
𝜕𝑧3

,
𝜏𝑟𝑧
2𝐺

=
𝜕2𝜙
𝜕𝑟𝜕𝑧

+ 2𝑧
𝜕3𝜙
𝜕𝑟𝜕𝑧2

𝜎𝑟
2𝐺

= 𝜂
𝜕2𝜙
𝜕𝑟2

+ 2𝑧
𝜕3𝜙
𝜕𝑟2𝜕𝑧

+ (𝜂 − 3)
𝜕2𝜙
𝜕𝑧2

𝜎𝜃
2𝐺

= −3
𝜕2𝜙
𝜕𝑧2

− 2𝑧
𝜕3𝜙
𝜕𝑧3

− 𝜂
𝜕2𝜙
𝜕𝑟2

− 2𝑧
𝜕3𝜙
𝜕𝑟2𝜕𝑧

(2)

Solution C

𝑢𝑟 = 2𝑟
𝜕2𝜒
𝜕𝑧2

+ (𝜂 + 5)
𝜕𝜒
𝜕𝑟

, 𝑢𝑧 = −2𝑟
𝜕2𝜒
𝜕𝑟𝜕𝑧

+ (3 − 𝜂)
𝜕𝜒
𝜕𝑧

𝜎𝑧
2𝐺

= −2𝑟
𝜕3𝜒
𝜕𝑟𝜕𝑧2

,
𝜏𝑟𝑧
2𝐺

= 3
𝜕2𝜒
𝜕𝑟𝜕𝑧

+ 𝑟
𝜕3𝜒
𝜕𝑧3

− 𝑟
𝜕3𝜒
𝜕𝑟2𝜕𝑧

𝜎𝑟
2𝐺

= (𝜂 + 5)
𝜕2𝜒
𝜕𝑟2

+ 2𝑟
𝜕3𝜒
𝜕𝑟𝜕𝑧2

+ (𝜂 − 1)
𝜕2𝜒
𝜕𝑧2

𝜎𝜃
2𝐺

= −(𝜂 + 5)
𝜕2𝜒
𝜕𝑟2

− 6
𝜕2𝜒
𝜕𝑧2

(3)

where 𝜑, 𝜙, and 𝜒 are the potential functions; 𝜂 = 3 − 4𝜈.

Besides, the aforementioned potential functions 𝜑, 𝜙, and 𝜒 should
satisfy Laplace’s equation as
(

1
𝑟
𝜕
𝜕𝑟

+ 𝜕2

𝜕𝑟2
+ 𝜕2

𝜕𝑧2

)

(𝜑, 𝜙, 𝜒) = 0 (4)

Since any function can be expressed by the superposition of the even
functions and the odd functions, the solutions of the above potential
functions can be decomposed into the even solutions and odd solutions
that meet the boundary conditions on the top and bottom surfaces.
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3. The analytical solution

3.1. The even solutions of the potential functions

For convenience, the following dimensionless parameters are intro-
duced

𝜁 = 𝑧
ℎ
, 𝜌 = 𝑟

ℎ
, 𝜌0 =

𝑟0
ℎ

(5)

Using the method of separation of variables for Eq. (4), one of the
even solution for the function 𝜑 is

𝜑00 = 𝐾0(𝛼𝑚𝜌) cos(𝛼𝑚𝜁 ), 𝛼𝑚 = 𝑚𝜋, 𝑚 = 1, 2, 3,… (6)

where 𝐾0() is the modified Bessel function of zero order of the second
kind.

According to Eq. (1), the shear stress 𝜏𝑟𝑧 introduced by 𝜑00 is zero
n the surfaces of 𝜁 = ±1. The normal stress 𝜎𝑧 is
𝜎𝑧
2𝐺

= −𝛼2𝑚𝐾0(𝛼𝑚𝜌) cos(𝛼𝑚𝜁 ) (7)

To cancel 𝜎𝑧 on the surfaces of 𝜁 = ±1 without introducing shear
stress 𝜏𝑟𝑧 on the surfaces, the solutions of the types B and C are found
as

𝜑01 =
∞
∑

𝑛=0,1,2,…
𝑐𝑚𝑛0𝑃0(𝑢𝑛𝜌) cosh(𝑢𝑛𝜁 ) (8a)

𝜙01 =
∞
∑

𝑛=0,1,2,…
𝑐𝑚𝑛1𝑃0(𝑢𝑛𝜌) cosh(𝑢𝑛𝜁 ) (8b)

where 𝑃0(𝑢𝑛𝜌) is defined as

𝑃0(𝑢𝑛𝜌) = 𝐽0(𝑢𝑛𝜌) −
𝐽1(𝑢𝑛𝜌)
𝑌1(𝑢𝑛𝜌)

𝑌0(𝑢𝑛𝜌) (9)

where 𝐽𝑖() and 𝑌𝑖() are the Bessel functions of the 𝑖th order of the first
kind and second kind, respectively.

The constant 𝑢𝑛 in the above equation is the 𝑛th root of the following
equation

𝐽0(𝑢𝑛𝜌1) −
𝐽1(𝑢𝑛𝜌0)
𝑌1(𝑢𝑛𝜌0)

𝑌0(𝑢𝑛𝜌1) = 0 (10)

where 𝜌1 is a constant much larger than 𝜌0.
The functions 𝑃0(𝑢𝑛𝜌) are orthogonal on the interval [𝜌0, 𝜌1] with the

weight 𝜌. Hence, 𝐾0(𝛼𝑚𝜌) and 𝜌𝐾1(𝛼𝑚𝜌) can be expressed by 𝑃0(𝑢𝑛𝜌) as

𝐾0(𝛼𝑚𝜌) =
∞
∑

𝑛=0,1,2,…
𝑎𝑚𝑛𝑃0(𝑢𝑛𝜌), 𝜌𝐾1(𝛼𝑚𝜌) =

∞
∑

𝑛=0,1,2,…
𝑏𝑚𝑛𝑃0(𝑢𝑛𝜌) (11)

where the constants 𝑎𝑚𝑛 and 𝑏𝑚𝑛 are

𝑎𝑚𝑛 =
2
[

𝜌1𝑢𝑛𝐾0(𝛼𝑚𝜌1)𝑃1(𝑢𝑛𝜌1) + 𝜌0𝛼𝑚𝐾1(𝛼𝑚𝜌0)𝑃0(𝑢𝑛𝜌0)
]

(

𝛼2𝑚 + 𝑢2𝑛
) [

𝜌21𝑃1(𝑢𝑛𝜌1)2 − 𝜌20𝑃0(𝑢𝑛𝜌0)2
]

𝑏𝑚𝑛 =
4
[

𝜌1𝑢𝑛𝛼𝑚𝐾0(𝛼𝑚𝜌1)𝑃1(𝑢𝑛𝜌1) − 𝜌0𝑢2𝑛𝐾1(𝛼𝑚𝜌0)𝑃0(𝑢𝑛𝜌0)
]

(

𝛼2𝑚 + 𝑢2𝑛
)2 [𝜌21𝑃1(𝑢𝑛𝜌1)2 − 𝜌20𝑃0(𝑢𝑛𝜌0)2

]

+

2𝜌21𝑢𝑛𝐾1(𝛼𝑚𝜌1)𝑃1(𝑢𝑛𝜌1) + 2𝜌0𝑃0(𝑢𝑛𝜌0)
[

𝜌0𝛼𝑚𝐾0(𝛼𝑚𝜌0) + 2𝐾1(𝛼𝑚𝜌0)
]

(

𝛼2𝑚 + 𝑢2𝑛
) [

𝜌21𝑃1(𝑢𝑛𝜌1)2 − 𝜌20𝑃0(𝑢𝑛𝜌0)2
]

(12)

The constants 𝑐𝑚𝑛0 and 𝑐𝑚𝑛1 can be determined through the condi-
tion of zero stresses on the surfaces 𝜁 = ±1. From Eqs. (1), (2), (7), (8),
and (11), the following can be obtained

𝑐𝑚𝑛0 sinh 𝑢𝑛 + 𝑐𝑚𝑛1
(

sinh 𝑢𝑛 + 2𝑢𝑛 cosh 𝑢𝑛
)

= 0 (13a)

𝑐𝑚𝑛0 cosh 𝑢𝑛 + 𝑐𝑚𝑛1
(

2𝑢𝑛 sinh 𝑢𝑛 − cosh 𝑢𝑛
)

= (−1)𝑚
𝛼2𝑚
2
𝑎𝑚𝑛 (13b)
3

𝑢𝑛
Solving Eq. (13), gives

𝑐𝑚𝑛0 =
(−1)𝑚𝛼2𝑚𝑎𝑚𝑛(sinh 𝑢𝑛 + 2𝑢𝑛 cosh 𝑢𝑛)

𝑢2𝑛(2𝑢𝑛 + sinh 2𝑢𝑛)
, 𝑐𝑚𝑛1 =

(−1)𝑚+1𝛼2𝑚𝑎𝑚𝑛 sinh 𝑢𝑛
𝑢2𝑛(2𝑢𝑛 + sinh 2𝑢𝑛)

(14)

Therefore, the final forms for the functions 𝜑 and 𝜙, which produce
zero stresses on the surfaces are

𝜑0 = 𝐾0(𝛼𝑚𝜌) cos(𝛼𝑚𝜁 ) +
∞
∑

𝑛=0,1,2,…
𝑐𝑚𝑛0𝑃0(𝑢𝑛𝜌) cosh(𝑢𝑛𝜁 )

𝜙0 =
∞
∑

𝑛=0,1,2,…
𝑐𝑚𝑛1𝑃0(𝑢𝑛𝜌) cosh(𝑢𝑛𝜁 )

(15)

Similar to the solution for the functions 𝜑0 and 𝜙0, another inde-
pendent solution for the functions 𝜑, 𝜙, and 𝜒 is

𝜒1 = 𝐾0(𝛼𝑚𝜌) cos(𝛼𝑚𝜁 )

𝜑1 =
∞
∑

𝑛=0,1,2,…
𝑑𝑚𝑛0𝑃0(𝑢𝑛𝜌) cosh(𝑢𝑛𝜁 )

𝜙1 =
∞
∑

𝑛=0,1,2,…
𝑑𝑚𝑛1𝑃0(𝑢𝑛𝜌) cosh(𝑢𝑛𝜁 )

(16)

where the constants 𝑑𝑚𝑛0 and 𝑑𝑚𝑛1 are

𝑑𝑚𝑛0 =
2(−1)𝑚𝛼3𝑚𝑏𝑚𝑛(sinh 𝑢𝑛 + 2𝑢𝑛 cosh 𝑢𝑛)

𝑢2𝑛(2𝑢𝑛 + sinh 2𝑢𝑛)
,

𝑑𝑚𝑛1 =
2(−1)𝑚+1𝛼3𝑚𝑏𝑚𝑛 sinh 𝑢𝑛
𝑢2𝑛(2𝑢𝑛 + sinh 2𝑢𝑛)

(17)

From Eqs. (15) and (16), it can be seen that when 𝑚 = 0 the
solutions are invalid. To establish the complete even solutions of the
potential functions, the following functions 𝜑2 and 𝜙2 satisfying the
boundary conditions are required

𝜑2 = 𝜙2 = ln 𝜌 (18)

3.2. The odd solutions of the potential functions

One of the odd solution for the function 𝜑 satisfying Eq. (4) can be
expressed by

𝜑∗
00 = 𝐾0(𝛽𝑚𝜌) sin(𝛽𝑚𝜁 ), 𝛽𝑚 = 2𝑚 − 1

2
𝜋, 𝑚 = 1, 2, 3,… (19)

From Eq. (1), the shear stress 𝜏𝑟𝑧 vanishes on the surfaces of 𝜁 = ±1.
The normal stress 𝜎𝑧 is
𝜎𝑧
2𝐺

ℎ2 = −𝛽2𝑚𝐾0(𝛽𝑚𝜌) sin(𝛽𝑚𝜁 ) (20)

To cancel the normal stress without giving the shear stress on the
urfaces 𝜁 = ±1, the following functions 𝜑∗

01 and 𝜙∗
01 are introduced

∗
01 =

∞
∑

𝑛=0,1,2,…
𝑐∗𝑚𝑛0𝑃0(𝑢𝑛𝜌) sinh(𝑢𝑛𝜁 )

∗
01 =

∞
∑

𝑛=0,1,2,…
𝑐∗𝑚𝑛1𝑃0(𝑢𝑛𝜌) sinh(𝑢𝑛𝜁 )

(21)

Similar to Eq. (11), 𝐾0(𝛽𝑚𝜌) and 𝜌𝐾1(𝛽𝑚𝜌) can be expressed by
0(𝑢𝑛𝜌) as

0(𝛽𝑚𝜌) =
∞
∑

𝑛=0,1,2,…
𝑎∗𝑚𝑛𝑃0(𝑢𝑛𝜌), 𝜌𝐾1(𝛽𝑚𝜌) =

∞
∑

𝑛=0,1,2,…
𝑏∗𝑚𝑛𝑃0(𝑢𝑛𝜌) (22)

here the constants 𝑎∗𝑚𝑛 and 𝑏∗𝑚𝑛 can be obtained by replacing 𝛼𝑚 with
𝑚 in the expressions of 𝑎𝑚𝑛 and 𝑏𝑚𝑛 in Eq. (12), respectively.

The constants 𝑐∗𝑚𝑛0 and 𝑐∗𝑚𝑛1 can be obtained by the condition of zero
tresses on the surfaces of 𝜁 = ±1. From Eqs. (1), (2), (20), (21) and
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𝜁

(22), the following can be obtained

𝑐∗𝑚𝑛0 cosh 𝑢𝑛 + 𝑐∗𝑚𝑛1
(

cosh 𝑢𝑛 + 2𝑢𝑛 sinh 𝑢𝑛
)

= 0 (23a)

∗
𝑚𝑛0 sinh 𝑢𝑛 + 𝑐∗𝑚𝑛1

(

2𝑢𝑛 cosh 𝑢𝑛 − sinh 𝑢𝑛
)

= (−1)𝑚+1
𝛽2𝑚
𝑢2𝑛

𝑎∗𝑚𝑛 (23b)

Therefore, 𝑐∗𝑚𝑛0 and 𝑐∗𝑚𝑛1 are

∗
𝑚𝑛0 =

(−1)𝑚+1𝛽2𝑚𝑎
∗
𝑚𝑛(cosh 𝑢𝑛 + 2𝑢𝑛 sinh 𝑢𝑛)

𝑢2𝑛(sinh 2𝑢𝑛 − 2𝑢𝑛)
, 𝑐∗𝑚𝑛1 =

(−1)𝑚𝛽2𝑚𝑎
∗
𝑚𝑛 cosh 𝑢𝑛

𝑢2𝑛(sinh 2𝑢𝑛 − 2𝑢𝑛)

(24)

To sum up, the functions 𝜑∗
0 and 𝜙∗

0, which satisfy the boundary
onditions, are

∗
0 = 𝐾0(𝛽𝑚𝜌) sin(𝛽𝑚𝜁 ) +

∞
∑

𝑛=0,1,2,…
𝑐∗𝑚𝑛0𝑃0(𝑢𝑛𝜌) sinh(𝑢𝑛𝜁 )

∗
0 =

∞
∑

𝑛=0,1,2,…
𝑐∗𝑚𝑛1𝑃0(𝑢𝑛𝜌) sinh(𝑢𝑛𝜁 )

(25)

With similar derivation to the functions 𝜑∗
0 and 𝜙∗

0, the other inde-
endent odd solution for the functions 𝜑, 𝜙, and 𝜒 is
∗
1 = 𝐾0(𝛽𝑚𝜌) sin(𝛽𝑚𝜁 )

∗
1 =

∞
∑

𝑛=0,1,2,…
𝑑∗𝑚𝑛0𝑃0(𝑢𝑛𝜌) sinh(𝑢𝑛𝜁 )

∗
1 =

∞
∑

𝑛=0,1,2,…
𝑑∗𝑚𝑛1𝑃0(𝑢𝑛𝜌) sinh(𝑢𝑛𝜁 )

(26)

where the constants 𝑑∗𝑚𝑛0 and 𝑑∗𝑚𝑛1 are

𝑑∗𝑚𝑛0 =
2(−1)𝑚+1𝛽3𝑚𝑏

∗
𝑚𝑛(cosh 𝑢𝑛 + 2𝑢𝑛 sinh 𝑢𝑛)

𝑢2𝑛(sinh 2𝑢𝑛 − 2𝑢𝑛)
,

∗
𝑚𝑛1 =

2(−1)𝑚𝛽3𝑚𝑏
∗
𝑚𝑛 cosh 𝑢𝑛

𝑢2𝑛(sinh 2𝑢𝑛 − 2𝑢𝑛)

(27)

3.3. The stresses

Once the potential functions are determined, the stresses can be
calculated by Eqs. (1)∼(3). The stresses 𝜎𝑟0(𝑚, 𝜌, 𝜁 ), 𝜏𝑟𝑧0(𝑚, 𝜌, 𝜁 ), and
𝜃0(𝑚, 𝜌, 𝜁 ) corresponding to the functions 𝜑0 and 𝜙0 are

𝜎𝑟0
2𝐺

ℎ2 = 𝜔𝑚0 cos(𝛼𝑚𝜁 ) +
∞
∑

𝑛=0,1,2,…
𝑒𝑚𝑛0 cosh(𝑢𝑛𝜁 ) +

∞
∑

𝑛=0,1,2,…
𝑒𝑚𝑛1𝜁 sinh(𝑢𝑛𝜁 )

𝜏𝑟𝑧0
2𝐺

ℎ2 = 𝜔𝑚1 sin(𝛼𝑚𝜁 ) +
∞
∑

𝑛=0,1,2,…
𝑒𝑚𝑛2 sinh(𝑢𝑛𝜁 ) +

∞
∑

𝑛=0,1,2,…
𝑒𝑚𝑛3𝜁 cosh(𝑢𝑛𝜁 )

𝜎𝜃0
2𝐺

ℎ2 = 𝜔𝑚2 cos(𝛼𝑚𝜁 ) +
∞
∑

𝑛=0,1,2,…
𝑒𝑚𝑛4 cosh(𝑢𝑛𝜁 ) +

∞
∑

𝑛=0,1,2,…
𝑒𝑚𝑛5𝜁 sinh(𝑢𝑛𝜁 )

(28)

here 𝜔𝑚0 ∼ 𝜔𝑚2 and 𝑒𝑚𝑛0 ∼ 𝑒𝑚𝑛5 are listed in Appendix.
The stresses 𝜎𝑟1(𝑚, 𝜌, 𝜁 ), 𝜏𝑟𝑧1(𝑚, 𝜌, 𝜁 ), and 𝜎𝜃1(𝑚, 𝜌, 𝜁 ) corresponding

o the functions 𝜒1, 𝜑1, and 𝜙1 are

𝜎𝑟1
2𝐺

ℎ2 = 𝜆𝑚0 cos(𝛼𝑚𝜁 ) +
∞
∑

𝑛=0,1,2,…
𝑓𝑚𝑛0 cosh(𝑢𝑛𝜁 ) +

∞
∑

𝑛=0,1,2,…
𝑓𝑚𝑛1𝜁 sinh(𝑢𝑛𝜁 )

𝜏𝑟𝑧1
2𝐺

ℎ2 = 𝜆𝑚1 sin(𝛼𝑚𝜁 ) +
∞
∑

𝑛=0,1,2,…
𝑓𝑚𝑛2 sinh(𝑢𝑛𝜁 ) +

∞
∑

𝑛=0,1,2,…
𝑓𝑚𝑛3𝜁 cosh(𝑢𝑛𝜁 )

𝜎𝜃1
2𝐺

ℎ2 = 𝜆𝑚2 cos(𝛼𝑚𝜁 ) +
∞
∑

𝑛=0,1,2,…
𝑓𝑚𝑛4 cosh(𝑢𝑛𝜁 ) +

∞
∑

𝑛=0,1,2,…
𝑓𝑚𝑛5𝜁 sinh(𝑢𝑛𝜁 )

(29)

here 𝜆 ∼ 𝜆 and 𝑓 ∼ 𝑓 are listed in Appendix.
4

𝑚0 𝑚2 𝑚𝑛0 𝑚𝑛5
The stresses 𝜎𝑟2(𝑚, 𝜌, 𝜁 ), 𝜏𝑟𝑧2(𝑚, 𝜌, 𝜁 ), and 𝜎𝜃2(𝑚, 𝜌, 𝜁 ) corresponding
o the functions 𝜙2 and 𝜒2 are the plane stress solution as

𝜎𝑟2
2𝐺

ℎ2 = −(𝜂 + 6) 1
𝜌2

𝜏𝑟𝑧2
2𝐺

ℎ2 = 0
𝜎𝜃2
2𝐺

ℎ2 = (𝜂 + 6) 1
𝜌2

(30)

Similar to the stresses given by the even potential functions, the
stresses 𝜎∗𝑟0(𝑚, 𝜌, 𝜁 ), 𝜏∗𝑟𝑧0(𝑚, 𝜌, 𝜁 ), and 𝜎∗𝜃0(𝑚, 𝜌, 𝜁 ) corresponding to the
unctions 𝜑∗

0 and 𝜙∗
0 are

𝜎∗𝑟0
2𝐺

ℎ2 = 𝜔∗
𝑚0 sin(𝛽𝑚𝜁 ) +

∞
∑

𝑛=0,1,2,…
𝑒∗𝑚𝑛0 sinh(𝑢𝑛𝜁 ) +

∞
∑

𝑛=0,1,2,…
𝑒∗𝑚𝑛1𝜁 cosh(𝑢𝑛𝜁 )

𝜏∗𝑟𝑧0
2𝐺

ℎ2 = 𝜔∗
𝑚1 cos(𝛽𝑚𝜁 ) +

∞
∑

𝑛=0,1,2,…
𝑒∗𝑚𝑛2 cosh(𝑢𝑛𝜁 ) +

∞
∑

𝑛=0,1,2,…
𝑒∗𝑚𝑛3𝜁 sinh(𝑢𝑛𝜁 )

𝜎∗𝜃0
2𝐺

ℎ2 = 𝜔∗
𝑚2 sin(𝛽𝑚𝜁 ) +

∞
∑

𝑛=0,1,2,…
𝑒∗𝑚𝑛4 sinh(𝑢𝑛𝜁 ) +

∞
∑

𝑛=0,1,2,…
𝑒∗𝑚𝑛5𝜁 cosh(𝑢𝑛𝜁 )

(31)

where the coefficients 𝜔∗
𝑚0, 𝜔

∗
𝑚2, 𝑒

∗
𝑚𝑛0, 𝑒

∗
𝑚𝑛1,… , 𝑒∗𝑚𝑛4 can be obtained by

replacing 𝛼𝑚 with 𝛽𝑚, 𝑐𝑚𝑛0 with 𝑐∗𝑚𝑛0, and 𝑐𝑚𝑛1 with 𝑐∗𝑚𝑛1 in Eq. (A.1);
∗
𝑚1 = −𝛽2𝑚𝐾1(𝛽𝑚𝜌).

The stresses 𝜎∗𝑟1(𝑚, 𝜌, 𝜁 ), 𝜏∗𝑟𝑧1(𝑚, 𝜌, 𝜁 ), and 𝜎∗𝜃1(𝑚, 𝜌, 𝜁 ) given by the
unctions 𝜒∗

1 , 𝜑∗
1, and 𝜙∗

1 are

𝜎∗𝑟1
2𝐺

ℎ2 = 𝜆∗𝑚0 sin(𝛽𝑚𝜁 ) +
∞
∑

𝑛=0,1,2,…
𝑓 ∗
𝑚𝑛0 sinh(𝑢𝑛𝜁 ) +

∞
∑

𝑛=0,1,2,…
𝑓 ∗
𝑚𝑛1𝜁 cosh(𝑢𝑛𝜁 )

𝜏∗𝑟𝑧1
2𝐺

ℎ2 = 𝜆∗𝑚1 cos(𝛽𝑚𝜁 ) +
∞
∑

𝑛=0,1,2,…
𝑓 ∗
𝑚𝑛2 cosh(𝑢𝑛𝜁 ) +

∞
∑

𝑛=0,1,2,…
𝑓 ∗
𝑚𝑛3𝜁 sinh(𝑢𝑛𝜁 )

𝜎∗𝜃1
2𝐺

ℎ2 = 𝜆∗𝑚2 sin(𝛽𝑚𝜁 ) +
∞
∑

𝑛=0,1,2,…
𝑓 ∗
𝑚𝑛4 sinh(𝑢𝑛𝜁 ) +

∞
∑

𝑛=0,1,2,…
𝑓 ∗
𝑚𝑛5𝜁 cosh(𝑢𝑛𝜁 )

(32)

where the coefficients 𝜆∗𝑚0, 𝜆
∗
𝑚2, 𝑓

∗
𝑚𝑛0, 𝑓

∗
𝑚𝑛1,… , 𝑓 ∗

𝑚𝑛4 can be found by
replacing 𝛼𝑚 with 𝛽𝑚, 𝑑𝑚𝑛0 with 𝑑∗𝑚𝑛0, and 𝑑𝑚𝑛1 with 𝑑∗𝑚𝑛1 in Eq. (A.2);
∗
𝑚1 = −2𝛽3𝑚𝜌𝐾0(𝛽𝑚𝜌) − 4𝛽2𝑚𝐾1(𝛽𝑚𝜌).

It is beneficial to represent these stresses by the Fourier expansions
n the coordinate 𝜁 . The required forms can be obtained by using the
ollowing Fourier expansions

cosh(𝑢𝑛𝜁 ) =
∞
∑

𝑚=1,2,…
𝑋𝑚𝑛0 cos(𝛼𝑚𝜁 ) +𝑋𝑛0,

sinh(𝑢𝑛𝜁 ) =
∞
∑

𝑚=1,2,…
𝑋𝑚𝑛1 cos(𝛼𝑚𝜁 ) +𝑋𝑛1

sinh(𝑢𝑛𝜁 ) =
∞
∑

𝑚=1,2,…
𝑋𝑚𝑛2 sin(𝛼𝑚𝜁 ), 𝜁 cosh(𝑢𝑛𝜁 ) =

∞
∑

𝑚=1,2,…
𝑋𝑚𝑛3 sin(𝛼𝑚𝜁 )

sinh(𝑢𝑛𝜁 ) =
∞
∑

𝑚=1,2,…
𝑋∗

𝑚𝑛0 sin(𝛽𝑚𝜁 ), 𝜁 cosh(𝑢𝑛𝜁 ) =
∞
∑

𝑚=1,2,…
𝑋∗

𝑚𝑛1 sin(𝛽𝑚𝜁 )

cosh(𝑢𝑛𝜁 ) =
∞
∑

𝑚=1,2,…
𝑋∗

𝑚𝑛2 cos(𝛽𝑚𝜁 ), 𝜁 sinh(𝑢𝑛𝜁 ) =
∞
∑

𝑚=1,2,…
𝑋∗

𝑚𝑛3 cos(𝛽𝑚𝜁 )

(33)

∗ ∗
where 𝑋𝑛0, 𝑋𝑛1, 𝑋𝑚𝑛0 ∼ 𝑋𝑚𝑛3, and 𝑋𝑚𝑛0 ∼ 𝑋𝑚𝑛3 are listed in Appendix.
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Substituting Eq. (33) into Eqs. (28), (29), (31) and (32), the stresses
can be expressed in the final form as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎𝑟0
2𝐺

ℎ2 = 𝜔𝑚0 cos(𝛼𝑚𝜁 ) +
∞
∑

𝑛=1,2,…
𝑒𝑋𝑚𝑛0 cos(𝛼𝑛𝜁 ) + 𝑒𝑋𝑚

𝜏𝑟𝑧0
2𝐺

ℎ2 = 𝜔𝑚1 sin(𝛼𝑚𝜁 ) +
∞
∑

𝑛=1,2,…
𝑒𝑋𝑚𝑛1 sin(𝛼𝑛𝜁 )

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎𝑟1
2𝐺

ℎ2 = 𝜆𝑚0 cos(𝛼𝑚𝜁 ) +
∞
∑

𝑛=1,2,…
𝑓𝑋𝑚𝑛0 cos(𝛼𝑛𝜁 ) + 𝑓𝑋𝑚

𝜏𝑟𝑧1
2𝐺

ℎ2 = 𝜆𝑚1 sin(𝛼𝑚𝜁 ) +
∞
∑

𝑛=1,2,…
𝑓𝑋𝑚𝑛1 sin(𝛼𝑛𝜁 )

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎∗𝑟0
2𝐺

ℎ2 = 𝜔∗
𝑚0 sin(𝛽𝑚𝜁 ) +

∞
∑

𝑛=1,2,…
𝑒𝑋∗

𝑚𝑛0 sin(𝛽𝑛𝜁 )

𝜏∗𝑟𝑧0
2𝐺

ℎ2 = 𝜔∗
𝑚1 cos(𝛽𝑚𝜁 ) +

∞
∑

𝑛=1,2,…
𝑒𝑋∗

𝑚𝑛1 cos(𝛽𝑛𝜁 )

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎∗𝑟1
2𝐺

ℎ2 = 𝜆∗𝑚0 sin(𝛽𝑚𝜁 ) +
∞
∑

𝑛=1,2,…
𝑓𝑋∗

𝑚𝑛0 sin(𝛽𝑛𝜁 )

𝜏∗𝑟𝑧0
2𝐺

ℎ2 = 𝜆∗𝑚1 cos(𝛽𝑚𝜁 ) +
∞
∑

𝑛=1,2,…
𝑓𝑋∗

𝑚𝑛1 cos(𝛽𝑛𝜁 )

(34)

here 𝑒𝑋𝑚𝑛0, 𝑒𝑋𝑚𝑛1, 𝑒𝑋𝑚, 𝑓𝑋𝑚𝑛0, 𝑓𝑋𝑚𝑛1, 𝑓𝑋𝑚, 𝑒𝑋∗
𝑚𝑛0, 𝑒𝑋

∗
𝑚𝑛1, 𝑓𝑋

∗
𝑚𝑛0,

nd 𝑓𝑋∗
𝑚𝑛1 are listed in Appendix.

.4. Determination of the stress coefficients

By a linear combination of the stresses in Eqs. (30) and (34), the
omplete stress solution for the current problem can be written as

𝑟 =
∞
∑

𝑚=1,2,…
(𝐴𝑚𝜎𝑟0 + 𝐵𝑚𝜎𝑟1 + 𝐴∗

𝑚𝜎
∗
𝑟0 + 𝐵∗

𝑚𝜎
∗
𝑟1) + 𝐴0𝜎𝑟2

𝑟𝑧 =
∞
∑

𝑚=1,2,…
(𝐴𝑚𝜏𝑟𝑧0 + 𝐵𝑚𝜏𝑟𝑧1 + 𝐴∗

𝑚𝜏
∗
𝑟𝑧0 + 𝐵∗

𝑚𝜏
∗
𝑟𝑧1)

𝜃 =
∞
∑

𝑚=1,2,…
(𝐴𝑚𝜎𝜃0 + 𝐵𝑚𝜎𝜃1 + 𝐴∗

𝑚𝜎
∗
𝜃0

+ 𝐵∗
𝑚𝜎

∗
𝜃1) + 𝐴0𝜎𝜃2

(35)

where 𝐴0, 𝐴𝑚, 𝐵𝑚, 𝐴∗
𝑚, and 𝐵∗

𝑚 are the unknown coefficients of the
stresses.

Since there are only axisymmetric radial residual stresses in the
undrilled plate, the shear stress 𝜏𝑟𝑧(𝜌0, 𝜁) is zero after the hole drilling.
The radial stress 𝜎𝑟0 (𝜁 ) can be expanded into the Fourier series as

𝜎𝑟0 (𝜁 ) = 𝐸0 +
∞
∑

𝑚=1,2,…
𝐸𝑚 cos(𝛼𝑚𝜁 ) +

∞
∑

𝑚=1,2,…
𝐸∗
𝑚 sin(𝛽𝑚𝜁 ) (36)

where 𝐸0, 𝐸𝑚, and 𝐸∗
𝑚 are the coefficients of the Fourier expansion.

Hence, the stress boundary conditions on the hole are

𝜏𝑟𝑧(𝜌0, 𝜁) = 0, 𝜎𝑟(𝜌0, 𝜁) = 𝜎𝑟0 (𝜁 ) (37)

Substituting Eqs. (35) and (36) into Eq. (37) and using the orthog-
onality of 1, cos(𝛼𝑚𝜁 ), and sin(𝛽𝑚𝜁 ) on the interval [−1, 1], it yields

𝐴0 +
𝑀𝑎𝑥−1
∑

𝑚=1,2,…
𝐴𝑚𝑒𝑋𝑚 +

𝑀𝑎𝑥−1
∑

𝑚=1,2,…
𝐵𝑚𝑓𝑋𝑚 = 𝐸0

𝐴𝑘𝜔𝑘0 + 𝐵𝑘𝜆𝑘0 +
𝑀𝑎𝑥−1
∑

𝑚=1,2,…
𝐴𝑚𝑒𝑋𝑚𝑘0 +

𝑀𝑎𝑥−1
∑

𝑚=1,2,…
𝐵𝑚𝑓𝑋𝑚𝑘0 = 𝐸𝑘

𝐴𝑘𝜔𝑘1 + 𝐵𝑘𝜆𝑘1 +
𝑀𝑎𝑥−1
∑

𝑚=1,2,…
𝐴𝑚𝑒𝑋𝑚𝑘1 +

𝑀𝑎𝑥−1
∑

𝑚=1,2,…
𝐵𝑚𝑓𝑋𝑚𝑘1 = 0 (38)

𝐴∗
𝑘𝜔

∗
𝑘0 + 𝐵∗

𝑘𝜆
∗
𝑘0 +

𝑀𝑎𝑥
∑

𝐴∗
𝑚𝑒𝑋

∗
𝑚𝑘0 +

𝑀𝑎𝑥
∑

𝐵∗
𝑚𝑓𝑋

∗
𝑚𝑘0 = 𝐸∗

𝑘

5

𝑚=1,2,… 𝑚=1,2,…
𝐴∗
𝑘𝜔

∗
𝑘1 + 𝐵∗

𝑘𝜆
∗
𝑘1 +

𝑀𝑎𝑥
∑

𝑚=1,2,…
𝐴∗
𝑚𝑒𝑋

∗
𝑚𝑘1 +

𝑀𝑎𝑥
∑

𝑚=1,2,…
𝐵∗
𝑚𝑓𝑋

∗
𝑚𝑘1 = 0

where 𝑀𝑎𝑥 is the truncation value for 𝑚 to ensure the convergence of
the solution; 𝑘 = 1, 2,… ,𝑀𝑎𝑥 − 1 for 𝐴𝑘, 𝐵𝑘, 𝐸𝑘 and 𝑘 = 1, 2,… ,𝑀𝑎𝑥
for 𝐴∗

𝑘, 𝐵
∗
𝑘 , 𝐸

∗
𝑘 .

The coefficients 𝐴0, 𝐴𝑚, 𝐵𝑚, 𝐴∗
𝑚, and 𝐵∗

𝑚 can be solved from Eq. (38).
Then, the stresses in the plate can be calculated using Eq. (35). Since
the normal stress 𝜎𝑧 on the surfaces 𝜁 = ±1 of the plate is zero, the
surface radial strain 𝜀𝑟(𝜌,±1) is calculated using Hooke’s law as

𝜀𝑟(𝜌,±1) =
1

2𝐺(1 + 𝜈)
[

𝜎𝑟(𝜌,±1) − 𝜈𝜎𝜃(𝜌,±1)
]

(39)

4. The reverse procedure

It is assumed that the stresses are continuous and infinite differen-
tiable at any point throughout the thickness. Therefore, the radial stress
𝜎𝑟0 (𝜁 ) may be expanded by the Maclaurin series as

𝜎𝑟0 (𝜁 ) =
∞
∑

𝑛=0
𝐿𝑛𝜁

𝑛 (40)

where 𝐿𝑛 is the undetermined coefficient.
It should be noted that the first few terms is generally enough

to approach 𝜎𝑟0 (𝜁 ) due to the convergence of series. The series is
truncated to 𝑁 in practice. The coefficient 𝐿𝑛 can be determined based
on the radial strains on the surfaces of the plate. The relationship
between the radial stress and the surface radial strains is established
in the form of matrix to conduct the reverse procedure. The constant
vector 𝐄 (=

[

𝐸0, 𝐸1,… , 𝐸𝑀𝑎𝑥−1, 0,… , 0, 𝐸∗
1 , 𝐸

∗
2 ,… , 𝐸∗

𝑀𝑎𝑥, 0,… , 0
]𝑇 ) can

be calculated by the coefficient vector 𝐋 (=
[

𝐿0, 𝐿1,… , 𝐿𝑁
]𝑇 ) as

𝐄 = 𝐌𝟏𝐋 (41)

where the matrix 𝐌𝟏 is listed in Appendix.
According to Eq. (38), the relationship between the coefficient vec-

tor of the stresses 𝐂 (=
[

𝐴0, 𝐴1,… , 𝐴𝑚𝑎𝑥−1, 𝐵1,… , 𝐵𝑀𝑎𝑥−1, 𝐴∗
1 ,… , 𝐴∗

𝑀𝑎𝑥,
𝐵∗
1 ,… , 𝐵∗

𝑀𝑎𝑥
]𝑇 ) and 𝐄 is

𝐂 = 𝐌𝟐
−1𝐄 (42)

where the matrix 𝐌𝟐 is listed in Appendix.
Substituting Eq. (35) into Eq. (39), the surface radial strain vec-

tor 𝜺 ( =
[

𝜀𝑟(𝜌𝑡1, 1), 𝜀𝑟(𝜌𝑡2, 1), ..., 𝜀𝑟(𝜌𝑡𝑁1
, 1), 𝜀𝑟(𝜌𝑏1,−1), 𝜀𝑟(𝜌𝑏2,−1),… ,

𝜀𝑟(𝜌𝑏𝑁2
,−1)

]𝑇
) is calculated by 𝐂 as

𝜺 = 𝐌𝟑𝐂 (43)

where 𝑁1 and 𝑁2 are the numbers of the measuring points at the top
and bottom surfaces, respectively; 𝜌𝑡𝑖 and 𝜌𝑏𝑗(1 ≤ 𝑖 ≤ 𝑁1, 1 ≤ 𝑗 ≤ 𝑁2)
are the dimensionless radial distances of the 𝑖th and 𝑗th measuring
points at the top and bottom surfaces, respectively; the matrix 𝐌𝟑 is
listed in Appendix.

From Eqs. (41)∼(43), the relationship between 𝐋 and 𝜺 are finally
obtained as following

𝜺 = 𝐌𝐋 (44)

where the matrix 𝐌 is 𝐌𝟑𝐌−𝟏
𝟐 𝐌𝟏.

For convenience, the measured surface radial strain is denoted by
𝜺𝒎 (=

[

𝜀𝑚𝑡(𝜌𝑡1), 𝜀𝑚𝑡(𝜌𝑡2),… , 𝜀𝑚𝑡(𝜌𝑡𝑁1
), 𝜀𝑚𝑏(𝜌𝑏1), 𝜀𝑚𝑏(𝜌𝑏2),… , 𝜀𝑚𝑏(𝜌𝑏𝑁2

)
]𝑇

).
The following function is introduced to describe the difference between
the predicted and measured surface radial strains

𝑓 (𝐋) = (𝐌𝐋 − 𝜺𝒎)𝐓(𝐌𝐋 − 𝜺𝒎) (45)

The predicted surface radial strain should be as close to the mea-

sured surface radial strain as possible. In other words, 𝑓 (𝐋) should take
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the stationary value. Hence, by calculating the derivative of 𝑓 with
espect to 𝐋, it yields
𝜕𝑓
𝜕𝐋

= 2𝐌𝐓(𝐌𝐋 − 𝜺𝒎) = 𝟎 (46)

The coefficient vector 𝐋 can be solved by Eq. (46). Then, the
easured through-thickness axisymmetric radial stress 𝜎𝑟0𝑚(𝜁 ) can be

calculated by Eq. (40). The coefficient of determination 𝑅2 and root-
mean-square deviation 𝑅𝑀𝑆𝐷 are used to evaluate the prediction,

hich are defined by

2 = 1 −
∫ 1
−1

[

𝜎𝑟0(𝜁 ) − 𝜎𝑟0𝑚(𝜁 )
]2

d𝜁

∫ 1
−1

[

𝜎𝑟0(𝜁 ) − ̄𝜎𝑟0
]2 d𝜁

(47a)

𝑀𝑆𝐷 =

√

√

√

√

√

∫ 1
−1

[

𝜎𝑟0(𝜁 ) − 𝜎𝑟0𝑚(𝜁 )
]2

d𝜁

2
(47b)

here ̄𝜎𝑟0 is the average value of 𝜎𝑟0(𝜁 ) on the interval [−1, 1]. It should
be noted the prediction is close to the real one when 𝑅2 approaches to
1 and 𝑅𝑀𝑆𝐷 is small.

5. Validation

It is well known that FEM can accurately simulate the elastic behav-
iors of materials. Fig. 2 illustrates the comparison of the top surface
radial strain by the present model with that by FEM. In the figure,
the distribution of the through-thickness axisymmetric radial stress is
plotted on the subfigure. Four different distributions of the through-
thickness axisymmetric radial stress were considered to validate the
proposed model. The FEM results were obtained by the numerical
program ABAQUS as shown in Fig. 3. A linear elastic material was
assigned to the plate with Young’s modulus 210 GPa and Poisson’s ratio
.3. The plate was simulated using eight-node 3-D solid elements with
educed integration (C3D8R). The thickness of the plate was 0.1 m. The
adius of the hole was 0.1 m and the radius of the plate was set to ten
imes the radius of the hole to reduce the influence of the boundary.
he element size at the hole edge was 0.01 m and increased from 0.01 m
t the hole edge to 0.04 m at the plate edge. The element size was
.01 m along the plate thickness. The FEM model was partitioned in
he thickness and the axisymmetric radial stress was applied on the
artitioned segments of the hole by creating the analytical field in the
hickness.

From Fig. 2, it can be seen that the present solutions agree well with
hose by FEM, indicating the good accuracy of the present model. The
light difference between the two methods in Fig. 2(d) may originate
rom the mesh and boundary conditions in FEM. From Fig. 2(a), it can
e observed that the results obtained by the present model, FEM, and
lane stress solution are very close. This indicates that the uniform
tress distribution can be evaluated based on the plane stress solution.
rom Fig. 2(b), it can be found that the linear stress distributions
ave negligible influence on the surface radial strain when the radial
tresses at 𝜁 = 1 are the same. This indicates that for the linear stress
istribution, the radial strain on the top surface (bottom surface) is
ainly affected by the radial stress at 𝜁 = 1 (𝜁 = −1). Inversely, the

inear distribution may be determined by measuring the surface radial
trains at the top and bottom surfaces simultaneously. Moreover, it is
bserved that the radial strain decreases rapidly first and then slowly.
t distances that are three times the radius of the hole away, the strain

s less more than 15% of that at the hole edge.
Fig. 4 shows the comparison between the predicted and real distri-

utions, in which the surface radial strains for the reverse procedure
re retrieved from the post-processing of FEM, as shown in Table 1.
t can be found that the prediction and real distribution are in good
greement, indicating the good accuracy for the reverse procedure. The
aximum deviation occurs in the parabolic distribution, which may be

aused by the mesh and boundary conditions set in FEM and the limited
6

eries terms. s
Table 1
The surface radial strain values calculated by FEM.
𝜌 𝐿𝑖𝑛𝑒𝑎𝑟 𝐵𝑖 − 𝑙𝑖𝑛𝑒𝑎𝑟 𝑃𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐

𝜀𝑚𝑡 [𝜇𝜀] 𝜀𝑚𝑏 [𝜇𝜀] 𝜀𝑚𝑡 [𝜇𝜀] 𝜀𝑚𝑏 [𝜇𝜀] 𝜀𝑚𝑡 [𝜇𝜀] 𝜀𝑚𝑏 [𝜇𝜀]

1.20 29.7 13.4 20.5 4.3 14.7 14.7
1.42 21.2 9.5 14.7 3.0 10.1 10.1
1.66 15.6 7.0 10.8 2.1 6.9 6.9
1.78 13.4 6.0 9.3 1.7 5.7 5.7
1.91 11.7 5.2 8.0 1.4 4.7 4.7
2.18 8.9 4.0 6.1 1.0 3.3 3.3

6. Parametric study

For convenience, the following typical parameters will be adopted
in the subsequent analysis, including the dimensionless radius of the
hole 𝜌0 = 1, Young’s modulus of the plate 𝐸𝑝 = 210 GPa, and Poisson’s
ratio 𝜈 = 0.3. Since the matrix 𝐌𝐓𝐌 determines the coefficient vector
𝐋 according to Eq. (46), the condition number of this matrix should
not be very large to ensure the stability of the solution. Fig. 5 gives
the relationship between the condition number of 𝐌𝐓𝐌 based on the
2 norm and the measuring points spacing 𝛥𝜌, where the measuring
oints closest to the center are located at 1.2 times the radius. The
ondition number declines with the increase of the number of the
easuring points. This is understood based on the fact that higher mea-

uring redundancy leads to more accurate measurement. The condition
umber rises with the increase of 𝑁 or the decrease of the spacing
f the measuring points 𝛥𝜌. Therefore, a more stable measurement
an be achieved by choosing small 𝑁 value and large 𝛥𝜌. Conversely,
he matrix 𝐌𝐓𝐌 may be ill-conditioned for a very large 𝑁 value or
n case of a small number of measuring points, leading to enormous
rrors in the prediction. In the following analysis, the radial strains
or both the top and bottom surfaces are located at distances that are
.2, 1.4, 1.6, 1.8, 2, 2.2 times the radius away from the center of the hole,
s shown in Fig. 6.

.1. Influence of the series term

Fig. 7 shows the contribution of the individual term of the series in
q. (40) to the surface radial strain, in which the values for all terms at
= 1 are 10 MPa. The surface radial strain decreases with the increase
f the order of the even or odd terms. This can be explained by that
he interior radial stress approaches to zero for a high order term. In
ddition, the surface radial strain calculated by the adjacent even and
dd terms (e.g., the zeroth and first terms) are close to each other.
owever, this is not the case for the bottom surface due to the opposite
istributions in the lower half of the plate. Hence, the adjacent terms
ay be determined by measuring the top and bottom surface radial

trains simultaneously. Moreover, the surface radial strain values are
lose to each other and approach zero when 𝜌 > 3, implying that the
easurements beyond 3 times the radius of the hole have little sense.

.2. Prediction of the residual stress by peening

In general, measurement errors include random errors and system-
tic errors. For DIC, the random errors are mainly caused by the image
oise while the systematic errors are mainly due to algorithms, which
an be reduced by improving the procedure, e.g. iDIC. To test the
ensitivity of the proposed mode to noise, the Gaussian noise with zero
ean value and varied standard deviations is added to the real surface

adial strains for the prediction of the residual stresses by peening.
ig. 8 presents the predictions of the residual stress by peening, in
hich the thickness is normalized to 2. There are in good agreement
ith high 𝑅2 and low 𝑅𝑀𝑆𝐷 even for the noise of a standard deviation
f 5% relative to the real strain values. The deviation increases with the
ncrease of the standard deviation. The maximum distinction occurs
t the turn of the distribution, which may be explained by the high
tandard deviation and the limited terms of the series.



Measurement 196 (2022) 111187H. Liu et al.
Fig. 2. Validation of the present model with FEM.
Fig. 3. The FEM model.

6.3. Prediction of the axisymmetric radial stress

In this section, the error obeying normal distribution with a stan-
dard deviation of 2.5% (relative to the real strain values) is added to the
surface radial strains to represent the noise. To avoid being confused
with the true measured values, the strain values adding the error are
denoted by the simulated values as shown in the subgraph. Fig. 9
shows the prediction of the axisymmetric radial stress in the linear
distribution. The predictions are very close to the real distributions. It
7

Fig. 4. The predicted distributions (𝑁 = 4).
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Fig. 5. The relationship between the condition number of 𝐌𝐓𝐌 and 𝛥𝜌.

Fig. 6. The arrangement of the measuring points.

Fig. 7. The influence of the individual term of the series on the surface radial strain.

can be seen that the prediction by setting 𝑁 = 1 is pretty accurate. This
is because 𝑁 = 1 corresponds to a linear distribution.

Fig. 10 shows the prediction of the axisymmetric radial stress in
the bi-linear distribution. The first four terms (𝑁 = 3) of the series
cannot present the real distribution properly. Although there is a high
8

Fig. 8. The predictions of the residual stress by peening (𝑁 = 4): (a) hammer peened
5 times (initially free-stress samples) [30]; (b) shot peeing intensity 0.26 mm A for
C-1020 material cold rolled [31].

Fig. 9. Prediction of the axisymmetric radial stress in the linear distribution.

derivation on the center between the predicted and real distributions,
it can give a similar trend using 𝑁 = 3. The deviation may come from
the representation of the radial stress using the limited terms of the
series. Nevertheless, the first five or six terms (𝑁 = 4 or 𝑁 = 5) can be
suitable to predict the bi-linear distribution of the stress, e.g., tension
at the surfaces but compression at the center of the plate.

As for a more complex polygonal distribution, Fig. 11 shows the
prediction of the axisymmetric radial stress in the quad-linear distri-
bution. It can be seen that the first four terms (𝑁 = 3) of the series
cannot give a satisfying prediction of the stress although it presents the
variation trend of the stress along the thickness. The main reason may
be due to the fact that the derivative of the stress is not continuous at
the tip and the stress cannot be expressed by Eq. (42) properly when
𝑁 ≤ 3. However, it can give a reasonable overall prediction by setting
𝑁 ≥ 4 and a better result for 𝑁 = 5. Thus, the terms with orders
larger than 3 have significant effects on the stress distribution. This can
be understood because for the rapid variation of the stress along the
thickness, the high order terms are important to constitute the stress.
Therefore, more terms of the series can give more accurate evaluations.
To conclude, the first six terms (𝑁 = 5) can be adopted to evaluate the
quad-linear distribution of the stress.

Fig. 12 illustrates the prediction of the axisymmetric radial stress
in the sinusoidal distribution. It can be found that the predictions
calculated by 𝑁 = 3 and 𝑁 = 4 are both close to the real distribution.
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M
d

Fig. 10. Prediction of the axisymmetric radial stress in the bi-linear distribution.

Fig. 11. Prediction of the axisymmetric radial stress in the quad-linear distribution.

oreover, A satisfactory match between the prediction and the real
istribution can be achieved when 𝑁 = 5.

6.4. Analysis of the resultant force and moment per unit hole circumference

The total effect of the through-thickness axisymmetric radial stress
may be treated as the resultant force and the moment per unit hole
circumference acting at the center of the hole, which are defined by

𝐹𝑜𝑟𝑐𝑒 = ∫

1

−1
ℎ𝜎𝑟0 (𝜁 )d𝜁

𝑀𝑜𝑚𝑒𝑛𝑡 = ∫

1

−1
ℎ2𝜁𝜎𝑟0 (𝜁 )d𝜁

(48)

The force and moment can be used to evaluate the deformation of
the plate according to the theory of plate. Figs. 13 and 14 show the
influences of the stress distributions with the same forces and moments
on the surface radial strain, respectively. In Fig. 13, the moments are
zero and the forces are the same for the five different stress distri-
butions. It can be seen that the stress distributions affect the strain
within 2.7 times the radius of the hole. In Fig. 14, the forces are zero
and moments are the same for the three different stress distributions.
9

Fig. 12. Prediction of the axisymmetric radial stress in the sinusoidal distribution.

Fig. 13. The influences of the stress distributions with the same resultant forces on
the surface radial strain.

Similar to Fig. 13, the stress distributions have great influences on
the strain within 2.5 the times the radius of the hole. From Figs. 13
and 14, it may be concluded that in order to measure the resultant
force and moment, the surface radial strains beyond 2.7 times the hole
radius need to be measured to eliminate the influence of the stress
distribution.

Since the strain beyond 2.7 times the hole radius is slightly affected
by the stress distribution, the stress along the thickness is assumed
to be linear distribution so as to conveniently evaluate the resultant
force and moment. Referring to Fig. 2(b), the surface radial strain can
be determined by the stress at the corresponding edge of the hole
according to the plane stress solution. Therefore, the stress in linear
distribution can be measured by the hole-drilling strain gauge method,
provided that the top and bottom surface radial strains beyond 2.7
times the hole radius are measured simultaneously.

7. Further discussion

Residual stresses play an important role in the stiffness, stability,
fracture, and fatigue of the component. Although the hole-drilling
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Fig. 14. The influences of the stress distributions with the same moments on the
urface radial strain.

train gauge method has been commonly implemented, it may not be
ble to measure the stresses along the whole thickness of the plate. This
aper proposes an analytical model to measure the through-thickness
xisymmetric radial residual stress with hole drilling. It should be noted
hat the general in-plane principal residual stresses 𝜎1(𝑧) and 𝜎2(𝑧)
arying along the thickness can be expressed by 𝜎𝑟(𝑧) and 𝜏𝑟𝜃(𝑧) in the
ylinder coordinate system as

𝑟(𝜃, 𝑧) =
𝜎1(𝑧) + 𝜎2(𝑧)

2
+

𝜎1(𝑧) − 𝜎2(𝑧)
2

cos(2𝜃)

𝜏𝑟𝜃(𝜃, 𝑧) =
𝜎1(𝑧) − 𝜎2(𝑧)

2
sin(2𝜃)

(49)

f the residual stresses are isotropic (equi-biaxial), i.e., 𝜎1(𝑧) = 𝜎2(𝑧),
here is only axisymmetric radial residual stress released after the hole
rilling. Therefore, the through-thickness isotropic residual stress can
e measured according to the proposed model. The measurement of the
erms relevant to 2𝜃 needs to be further studied to establish a general
odel for the measurement of the in-plane through-thickness residual

tresses. Besides, the experimental research adopting the developed
odel will also be carried out in the future to investigate the influence

f the residual stresses on the mechanical properties of the component.

. Conclusion

The analytical solution for the strain of a plate with a hole subjected
o the through-thickness axisymmetric radial stress is obtained based
n the three-dimensional elastic theory. It is assumed that the through-
hickness axisymmetric radial residual stress can be expanded into the
aclaurin series. Then, the reverse procedure is proposed to determine

he coefficients of the series by minimizing the predicted and measured
urface radial strains with hole drilling. The model is validated by FEM
or a few typical distribution types of the axisymmetric radial stress
long the thickness. From the study, some major conclusions can be
rawn as follows
(1) More stable results can be achieved by choosing fewer terms of

he Maclaurin series and more measuring points with large spacing. The
urface radial strain decreases with the increase of the order of the even
r odd terms.
(2) The residual stress caused by peening can be predicted with the

roposed model. The first two terms of the Maclaurin series can be
sed to predict linear distributions while five terms are required for
ore satisfactory predictions of bi-linear, quad-linear, and sinusoidal
istributions.
10
(3) The stress distributions with the same resultant forces or mo-
ents per unit hole circumference mainly affect the surface radial

train within 2.7 times the hole radius. The force and moment can be
easured by the hole-drilling strain gauge method, provided that the

op and bottom surface radial strains beyond 2.7 times hole radius are
easured simultaneously.
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ppendix

The coefficients 𝜔𝑚0 ∼ 𝜔𝑚2 and 𝑒𝑚𝑛0 ∼ 𝑒𝑚𝑛5 in Eq. (28) are

𝑚0 = 𝛼2𝑚𝐾0(𝛼𝑚𝜌) +
𝛼𝑚𝐾1(𝛼𝑚𝜌)

𝜌

𝑒𝑚𝑛0 = −𝑢2𝑛(𝑐𝑚𝑛0 + 3𝑐𝑚𝑛1)𝑃0(𝑢𝑛𝜌) + 𝑢𝑛(𝑐𝑚𝑛0 + 𝜂𝑐𝑚𝑛1)
𝑃1(𝑢𝑛𝜌)

𝜌

𝑒𝑚𝑛1 = 2𝑢2𝑛𝑐𝑚𝑛1

[

−𝑢𝑛𝑃0(𝑢𝑛𝜌) +
𝑃1(𝑢𝑛𝜌)

𝜌

]

, 𝜔𝑚1 = 𝛼2𝑚𝐾1(𝛼𝑚𝜌)

𝑒𝑚𝑛2 = −𝑢2𝑛(𝑐𝑚𝑛0 + 𝑐𝑚𝑛1)𝑃1(𝑢𝑛𝜌), 𝑒𝑚𝑛3 = −2𝑢3𝑛𝑐𝑚𝑛1𝑃1(𝑢𝑛𝜌)

𝜔𝑚2 = −
𝛼𝑚𝐾1(𝛼𝑚𝜌)

𝜌
, 𝑒𝑚𝑛5 = −2𝑢2𝑛𝑐𝑚𝑛1

𝑃1(𝑢𝑛𝜌)
𝜌

𝑒𝑚𝑛4 = 𝑢2𝑛(𝜂 − 3)𝑐𝑚𝑛1𝑃0(𝑢𝑛𝜌) − 𝑢𝑛(𝑐𝑚𝑛0 + 𝜂𝑐𝑚𝑛1)
𝑃1(𝑢𝑛𝜌)

𝜌

(A.1)

The coefficients 𝜆𝑚0 ∼ 𝜆𝑚2 and 𝑓𝑚𝑛0 ∼ 𝑓𝑚𝑛5 in Eq. (29) are

𝜆𝑚0 = 6𝛼2𝑚𝐾0(𝛼𝑚𝜌) + 2𝛼3𝑚𝜌𝐾1(𝛼𝑚𝜌) + (𝜂 + 5)𝛼𝑚
𝐾1(𝛼𝑚𝜌)

𝜌

𝑓𝑚𝑛0 = −𝑢2𝑛(𝑑𝑚𝑛0 + 3𝑑𝑚𝑛1)𝑃0(𝑢𝑛𝜌) + 𝑢𝑛(𝑑𝑚𝑛0 + 𝜂𝑑𝑚𝑛1)
𝑃1(𝑢𝑛𝜌)

𝜌

𝑓𝑚𝑛1 = 2𝑢2𝑛𝑑𝑚𝑛1

[

−𝑢𝑛𝑃0(𝑢𝑛𝜌) +
𝑃1(𝑢𝑛𝜌)

𝜌

]

, 𝑓𝑚𝑛3 = −2𝑢3𝑛𝑑𝑚𝑛1𝑃1(𝑢𝑛𝜌)

𝑚1 = 2𝛼3𝑚𝜌𝐾0(𝛼𝑚𝜌) + 4𝛼2𝑚𝐾1(𝛼𝑚𝜌)

𝑚𝑛2 = −𝑢2𝑛(𝑑𝑚𝑛0 + 𝑑𝑚𝑛1)𝑃1(𝑢𝑛𝜌), 𝑓𝑚𝑛5 = −2𝑢2𝑛𝑑𝑚𝑛1
𝑃1(𝑢𝑛𝜌)

𝜌

𝜆𝑚2 = (1 − 𝜂)𝛼2𝑚𝐾0(𝛼𝑚𝜌) − (𝜂 + 5)
𝛼𝑚𝐾1(𝛼𝑚𝜌)

𝜌

𝑓𝑚𝑛4 = 𝑢2𝑛(𝜂 − 3)𝑑𝑚𝑛1𝑃0(𝑢𝑛𝜌) − 𝑢𝑛(𝑑𝑚𝑛0 + 𝜂𝑑𝑚𝑛1)
𝑃1(𝑢𝑛𝜌)

𝜌

(A.2)

The coefficients 𝑋𝑛0, 𝑋𝑛1, 𝑋𝑚𝑛0 ∼ 𝑋𝑚𝑛3, and 𝑋∗
𝑚𝑛0 ∼ 𝑋∗

𝑚𝑛3 in Eq. (33)
re

𝑛0 =
sinh 𝑢𝑛
𝑢𝑛

, 𝑋𝑛1 =
cosh 𝑢𝑛
𝑢𝑛

−
sinh 𝑢𝑛
𝑢2𝑛

𝑋𝑚𝑛0 =
2(−1)𝑚𝑢𝑛 sinh 𝑢𝑛

𝑢2𝑛 + 𝛼2𝑚
,

𝑋𝑚𝑛1 = 2(−1)𝑚
[

𝑢𝑛 cosh 𝑢𝑛
2 2

−
(𝑢2𝑛 − 𝛼2𝑚) sinh 𝑢𝑛

2 2 2

]

𝑢𝑛 + 𝛼𝑚 (𝑢𝑛 + 𝛼𝑚)
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𝑋𝑚𝑛2 = 2(−1)𝑚+1
𝛼𝑚 sinh(𝑢𝑛)
𝑢2𝑛 + 𝛼2𝑚

,

𝑋𝑚𝑛3 = 2(−1)𝑚+1𝛼𝑚

[

cosh 𝑢𝑛
𝑢2𝑛 + 𝛼2𝑚

−
2𝑢𝑛 sinh 𝑢𝑛
(𝑢2𝑛 + 𝛼2𝑚)2

]

(A.3)

𝑋∗
𝑚𝑛0 =

2(−1)𝑚+1𝑢𝑛 cosh 𝑢𝑛
𝑢2𝑛 + 𝛽2𝑚

,

𝑋∗
𝑚𝑛1 =

2(−1)𝑚+1

𝑢2𝑛 + 𝛽2𝑚

[

𝑢𝑛 sinh 𝑢𝑛 −
(𝑢2𝑛 − 𝛽2𝑚) cosh 𝑢𝑛

𝑢2𝑛 + 𝛽2𝑚

]

𝑋∗
𝑚𝑛2 = 2(−1)𝑚+1

𝛽𝑚 cosh(𝑢𝑛)
𝑢2𝑛 + 𝛽2𝑚

,

𝑋∗
𝑚𝑛3 =

2(−1)𝑚+1𝛽𝑚
𝑢2𝑛 + 𝛽2𝑚

[

sinh 𝑢𝑛 −
2𝑢𝑛 cosh 𝑢𝑛
𝑢2𝑛 + 𝛽2𝑚

]

The coefficients 𝑒𝑋𝑚𝑛0, 𝑒𝑋𝑚𝑛1, 𝑒𝑋𝑚, 𝑓𝑋𝑚𝑛0, 𝑓𝑋𝑚𝑛1, 𝑓𝑋𝑚, 𝑒𝑋∗
𝑚𝑛0,

𝑒𝑋∗
𝑚𝑛1, 𝑓𝑋

∗
𝑚𝑛0, and 𝑓𝑋∗

𝑚𝑛1 in Eq. (34) are

𝑒𝑋𝑚𝑛0 =
∞
∑

𝑡=0,1,2...
(𝑒𝑚𝑡0𝑋𝑛𝑡𝑜 + 𝑒𝑚𝑡1𝑋𝑛𝑡1),

𝑒𝑋𝑚 =
∞
∑

𝑡=0,1,2...
(𝑒𝑚𝑡0𝑋𝑡0 + 𝑒𝑚𝑡1𝑋𝑡1)

𝑒𝑋𝑚𝑛1 =
∞
∑

𝑡=0,1,2...
(𝑒𝑚𝑡2𝑋𝑛𝑡2 + 𝑒𝑚𝑡3𝑋𝑛𝑡3),

𝑓𝑋𝑚𝑛0 =
∞
∑

𝑡=0,1,2...
(𝑓𝑚𝑡0𝑋𝑛𝑡0 + 𝑓𝑚𝑡1𝑋𝑛𝑡1)

𝑓𝑋𝑚 =
∞
∑

𝑡=0,1,2...
(𝑓𝑚𝑡0𝑋𝑡0 + 𝑓𝑚𝑡1𝑋𝑡1),

𝑓𝑋𝑚𝑛1 =
∞
∑

𝑡=0,1,2...
(𝑓𝑚𝑡2𝑋𝑛𝑡2 + 𝑓𝑚𝑡3𝑋𝑛𝑡3)

𝑒𝑋∗
𝑚𝑛0 =

∞
∑

𝑡=0,1,2...
(𝑒∗𝑚𝑡0𝑋

∗
𝑛𝑡0 + 𝑒∗𝑚𝑡1𝑋

∗
𝑛𝑡1),

𝑒𝑋∗
𝑚𝑛1 =

∞
∑

𝑡=0,1,2...
(𝑒∗𝑚𝑡2𝑋

∗
𝑛𝑡2 + 𝑒∗𝑚𝑡3𝑋

∗
𝑛𝑡3)

𝑓𝑋∗
𝑚𝑛0 =

∞
∑

𝑡=0,1,2...
(𝑓 ∗

𝑚𝑡0𝑋
∗
𝑛𝑡0 + 𝑓 ∗

𝑚𝑡1𝑋
∗
𝑛𝑡1),

𝑓𝑋∗
𝑚𝑛1 =

∞
∑

𝑡=0,1,2...
(𝑓 ∗

𝑚𝑡2𝑋
∗
𝑛𝑡2 + 𝑓 ∗

𝑚𝑡3𝑋
∗
𝑛𝑡3)

(A.4)

The matrix 𝐌𝟏 in Eq. (41) is

𝐌𝟏 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
2
∫ 1
−1 1d𝜁

1
2
∫ 1
−1 𝜁d𝜁 ⋯ 1

2
∫ 1
−1 𝜁

𝑁d𝜁

∫ 1
−1 cos(𝛼1𝜁 )d𝜁 ∫ 1

−1 𝜁 cos(𝛼1𝜁 )d𝜁 ⋯ ∫ 1
−1 𝜁

𝑁 cos(𝛼1𝜁 )d𝜁
⋮ ⋮ ⋱ ⋮

∫ 1
−1 cos(𝛼𝑀𝑎𝑥−1𝜁 )d𝜁 ∫ 1

−1 𝜁 cos(𝛼𝑀𝑎𝑥−1𝜁 )d𝜁 ⋯ ∫ 1
−1 𝜁

𝑁 cos(𝛼𝑀𝑎𝑥−1𝜁 )d𝜁
𝟎𝟏 𝟎𝟏 ⋯ 𝟎𝟏

∫ 1
−1 sin(𝛽1𝜁 )d𝜁 ∫ 1

−1 𝜁 sin(𝛽1𝜁 )d𝜁 ⋯ ∫ 1
−1 𝜁

𝑁 sin(𝛽1𝜁 )d𝜁
⋮ ⋮ ⋱ ⋮

∫ 1
−1 sin(𝛽𝑀𝑎𝑥𝜁 )d𝜁 ∫ 1

−1 𝜁 sin(𝛽𝑀𝑎𝑥𝜁 )d𝜁 ⋯ ∫ 1
−1 𝜁

𝑁 sin(𝛽𝑀𝑎𝑥𝜁 )d𝜁
𝟎𝟐 𝟎𝟐 ⋯ 𝟎𝟐

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.5)

where 𝟎𝟏 and 𝟎𝟐 are the zero column vectors with 𝑀𝑎𝑥 − 1 and 𝑀𝑎𝑥
elements, respectively.

The matrix 𝐌𝟐 in Eq. (42) is

𝐌𝟐 =

⎡

⎢

⎢

⎢

⎢

⎢

1 𝐞𝐗 𝐟𝐗 𝟎 𝟎
𝟎 𝐌𝟏𝐀 𝐌𝟏𝐁 𝟎 𝟎
𝟎 𝐌𝟐𝐀 𝐌𝟐𝐁 𝟎 𝟎
𝟎 𝟎 𝟎 𝐌∗

𝟏𝐀 𝐌∗
𝟏𝐁

∗ ∗

⎤

⎥

⎥

⎥

⎥

⎥

(A.6)
11

⎣
𝟎 𝟎 𝟎 𝐌𝟐𝐀 𝐌𝟐𝐁⎦
where 𝐞𝐗 =
[

𝑒𝑋1, 𝑒𝑋2,… , 𝑒𝑋𝑀𝑎𝑥−1
]

and 𝐟𝐗 =
[

𝑓𝑋1, 𝑓𝑋2,… , 𝑓𝑋𝑀𝑎𝑥−1
]

;
the sub-matrices 𝐌1𝐴, 𝐌1𝐵 , 𝐌2𝐴, 𝐌2𝐵 , 𝐌∗

1𝐴, 𝐌∗
1𝐵 , 𝐌∗

2𝐴, 𝐌∗
2𝐵 are

𝐌𝟏𝐀 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜔10 + 𝑒𝑋110 𝑒𝑋210 ⋯ 𝑒𝑋𝑀𝑎𝑥−110
𝑒𝑋120 𝜔20 + 𝑒𝑋220 ⋯ 𝑒𝑋𝑀𝑎𝑥−120
⋮ ⋮ ⋱ ⋮

𝑒𝑋1𝑀𝑎𝑥−10 𝑒𝑋2𝑀𝑎𝑥−10 ⋯ 𝜔𝑀𝑎𝑥−10 + 𝑒𝑋𝑀𝑎𝑥−1𝑀𝑎𝑥−10

⎤

⎥

⎥

⎥

⎥

⎦

𝐌𝟏𝐁 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜆10 + 𝑓𝑋110 𝑓𝑋210 ⋯ 𝑓𝑋𝑀𝑎𝑥−110
𝑓𝑋120 𝜆20 + 𝑓𝑋220 ⋯ 𝑓𝑋𝑀𝑎𝑥−120

⋮ ⋮ ⋱ ⋮
𝑓𝑋1𝑀𝑎𝑥−10 𝑓𝑋2𝑀𝑎𝑥−10 ⋯ 𝜆𝑀𝑎𝑥−10 + 𝑓𝑋𝑀𝑎𝑥−1𝑀𝑎𝑥−10

⎤

⎥

⎥

⎥

⎥

⎦

𝐌𝟐𝐀 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜔11 + 𝑒𝑋111 𝑒𝑋211 ⋯ 𝑒𝑋𝑀𝑎𝑥−111
𝑒𝑋121 𝜔21 + 𝑒𝑋221 ⋯ 𝑒𝑋𝑀𝑎𝑥−121
⋮ ⋮ ⋱ ⋮

𝑒𝑋1𝑀𝑎𝑥−11 𝑒𝑋2𝑀𝑎𝑥−11 ⋯ 𝜔𝑀𝑎𝑥−11 + 𝑒𝑋𝑀𝑎𝑥−1𝑀𝑎𝑥−11

⎤

⎥

⎥

⎥

⎥

⎦

𝐌𝟐𝐁 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜆11 + 𝑓𝑋111 𝑓211 ⋯ 𝑓𝑋𝑀𝑎𝑥−111
𝑓𝑋121 𝜆21 + 𝑓𝑋221 ⋯ 𝑓𝑋𝑀𝑎𝑥−121

⋮ ⋮ ⋱ ⋮
𝑓𝑋1𝑀𝑎𝑥−11 𝑓𝑋2𝑀𝑎𝑥−11 ⋯ 𝜆𝑀𝑎𝑥−11 + 𝑓𝑋𝑀𝑎𝑥−1𝑀𝑎𝑥−11

⎤

⎥

⎥

⎥

⎥

⎦

𝐌∗
𝟏𝐀 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜔∗
10 + 𝑒𝑋∗

110 𝑒𝑋∗
210 ⋯ 𝑒𝑋∗

𝑀𝑎𝑥10
𝑒𝑋∗

120 𝜔∗
20 + 𝑒𝑋∗

220 ⋯ 𝑒𝑋∗
𝑀𝑎𝑥20

⋮ ⋮ ⋱ ⋮
𝑒𝑋∗

1𝑀𝑎𝑥0 𝑒𝑋∗
2𝑀𝑎𝑥0 ⋯ 𝜔∗

𝑀𝑎𝑥0 + 𝑒𝑋∗
𝑀𝑎𝑥𝑀𝑎𝑥0

⎤

⎥

⎥

⎥

⎥

⎦

𝐌∗
𝟏𝐁 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜆∗10 + 𝑓𝑋∗
110 𝑓𝑋∗

210 ⋯ 𝑓𝑋∗
𝑀𝑎𝑥10

𝑓𝑋∗
120 𝜆∗20 + 𝑓𝑋∗

220 ⋯ 𝑓𝑋∗
𝑀𝑎𝑥20

⋮ ⋮ ⋱ ⋮
𝑓𝑋∗

1𝑀𝑎𝑥0 𝑓𝑋∗
2𝑀𝑎𝑥0 ⋯ 𝜆∗𝑀𝑎𝑥0 + 𝑓𝑋∗

𝑀𝑎𝑥𝑀𝑎𝑥0

⎤

⎥

⎥

⎥

⎥

⎦

𝐌∗
𝟐𝐀 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜔∗
11 + 𝑒𝑋∗

111 𝑒𝑋∗
211 ⋯ 𝑒𝑋∗

𝑀𝑎𝑥11
𝑒𝑋∗

121 𝜔∗
21 + 𝑒𝑋∗

221 ⋯ 𝑒𝑋∗
𝑀𝑎𝑥21

⋮ ⋮ ⋱ ⋮
𝑒𝑋∗

1𝑀𝑎𝑥1 𝑒𝑋∗
2𝑀𝑎𝑥1 ⋯ 𝜔∗

𝑀𝑎𝑥1 + 𝑒𝑋∗
𝑀𝑎𝑥𝑀𝑎𝑥1

⎤

⎥

⎥

⎥

⎥

⎦

𝐌∗
𝟐𝐁 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜆∗11 + 𝑓𝑋∗
111 𝑓 ∗

211 ⋯ 𝑓𝑋∗
𝑀𝑎𝑥11

𝑓𝑋∗
121 𝜆∗21 + 𝑓𝑋∗

221 ⋯ 𝑓𝑋∗
𝑀𝑎𝑥21

⋮ ⋮ ⋱ ⋮
𝑓𝑋∗

1𝑀𝑎𝑥1 𝑓𝑋∗
2𝑀𝑎𝑥1 ⋯ 𝜆∗𝑀𝑎𝑥1 + 𝑓𝑋∗

𝑀𝑎𝑥𝑀𝑎𝑥1

⎤

⎥

⎥

⎥

⎥

⎦

The matrix 𝐌𝟑 in Eq. (43) is

𝐌𝟑 =
1

2𝐺(1 + 𝜈)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑀𝑡1 𝐌𝐀𝐭𝟏 𝐌𝐁𝐭𝟏 𝐌𝐀∗
𝐭𝟏 𝐌𝐁∗

𝐭𝟏
𝑀𝑡2 𝐌𝐀𝐭𝟐 𝐌𝐁𝐭𝟐 𝐌𝐀∗

𝐭𝟐 𝐌𝐁∗
𝐭𝟐

⋮ ⋮ ⋮ ⋮ ⋮
𝑀𝑡𝑁1

𝐌𝐀𝐭𝐍𝟏
𝐌𝐁𝐭𝐍𝟏

𝐌𝐀∗
𝐭𝐍𝟏

𝐌𝐁∗
𝐭𝐍𝟏

𝑀𝑏1 𝐌𝐀𝐛𝟏 𝐌𝐁𝐛𝟏 𝐌𝐀∗
𝐛𝟏 𝐌𝐁∗

𝐛𝟏
𝑀𝑏2 𝐌𝐀𝐛𝟐 𝐌𝐁𝐛𝟐 𝐌𝐀∗

𝐛𝟐 𝐌𝐁∗
𝐛𝟐

⋮ ⋮ ⋮ ⋮ ⋮
𝑀𝑏𝑁2

𝐌𝐀𝐛𝐍𝟐
𝐌𝐁𝐛𝐍𝟐

𝐌𝐀∗
𝐛𝐍𝟐

𝐌𝐁∗
𝐛𝐍𝟐

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.7)

where 𝑀𝑡𝑖,𝐌𝐀𝐭𝐢,𝐌𝐁𝐭𝐢,𝐌𝐀∗
𝐭𝐢,𝐌𝐁∗

𝐭𝐢,𝐌𝐀𝐛𝐣,𝐌𝐁𝐛𝐣,𝐌𝐀∗
𝐛𝐣,𝐌𝐁∗

𝐛𝐣(1 ≤ 𝑖 ≤
𝑁1, 1 ≤ 𝑗 ≤ 𝑁2) are as follows

𝑀𝑡𝑖 = 𝜎𝑟2(𝜌𝑡𝑖) − 𝜈𝜎𝜃2(𝜌𝑡𝑖)

𝑀𝑏𝑖 = 𝜎𝑟2(𝜌𝑏𝑗 ) − 𝜈𝜎𝜃2(𝜌𝑏𝑗 )

𝐌𝐀𝐭𝐢 =
[

𝜎𝑟0(1, 𝜌𝑡𝑖, 1) − 𝜈𝜎𝜃0(1, 𝜌𝑡𝑖, 1),… ,

𝜎𝑟0(𝑀𝑎𝑥 − 1, 𝜌𝑡𝑖, 1) − 𝜈𝜎𝜃0(𝑀𝑎𝑥 − 1, 𝜌𝑡𝑖, 1)
]

𝐌𝐁𝐭𝐢 =
[

𝜎𝑟1(1, 𝜌𝑡𝑖, 1) − 𝜈𝜎𝜃1(1, 𝜌𝑡𝑖, 1),… ,

𝜎𝑟1(𝑀𝑎𝑥 − 1, 𝜌𝑡𝑖, 1) − 𝜈𝜎𝜃1(𝑀𝑎𝑥 − 1, 𝜌𝑡𝑖, 1)
]

𝐌𝐀∗
𝐭𝐢 =

[

𝜎∗𝑟0(1, 𝜌𝑡𝑖, 1) − 𝜈𝜎∗𝜃0(1, 𝜌𝑡𝑖, 1),… ,

𝜎∗𝑟0(𝑀𝑎𝑥, 𝜌𝑡𝑖, 1) − 𝜈𝜎∗𝜃0(𝑀𝑎𝑥, 𝜌𝑡𝑖, 1)
]

𝐌𝐁∗
𝐭𝐢 =

[

𝜎∗𝑟1(1, 𝜌𝑡𝑖, 1) − 𝜈𝜎∗𝜃1(1, 𝜌𝑡𝑖, 1),… ,

𝜎∗𝑟1(𝑀𝑎𝑥, 𝜌𝑡𝑖, 1) − 𝜈𝜎∗𝜃1(𝑀𝑎𝑥, 𝜌𝑡𝑖, 1)
]

𝐌𝐀 =
[

𝜎 (1, 𝜌 ,−1) − 𝜈𝜎 (1, 𝜌 ,−1),… ,
𝐛𝐣 𝑟0 𝑏𝑗 𝜃0 𝑏𝑗
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𝜎𝑟0(𝑀𝑎𝑥 − 1, 𝜌𝑏𝑗 ,−1) − 𝜈𝜎𝜃0(𝑀𝑎𝑥 − 1, 𝜌𝑏𝑗 ,−1)
]

𝐌𝐁𝐛𝐣 =
[

𝜎𝑟1(1, 𝜌𝑏𝑗 ,−1) − 𝜈𝜎𝜃1(1, 𝜌𝑏𝑗 ,−1),… ,

𝜎𝑟1(𝑀𝑎𝑥 − 1, 𝜌𝑏𝑗 ,−1) − 𝜈𝜎𝜃1(𝑀𝑎𝑥 − 1, 𝜌𝑏𝑗 ,−1)
]

𝐌𝐀∗
𝐛𝐣 =

[

𝜎∗𝑟0(1, 𝜌𝑏𝑗 ,−1) − 𝜈𝜎∗𝜃0(1, 𝜌𝑏𝑗 ,−1),… ,

𝜎∗𝑟0(𝑀𝑎𝑥, 𝜌𝑏𝑗 ,−1) − 𝜈𝜎∗𝜃0(𝑀𝑎𝑥, 𝜌𝑏𝑗 ,−1)
]

𝐌𝐁∗
𝐛𝐣 =

[

𝜎∗𝑟1(1, 𝜌𝑏𝑗 ,−1) − 𝜈𝜎∗𝜃1(1, 𝜌𝑏𝑗 ,−1),… ,

𝜎∗𝑟1(𝑀𝑎𝑥, 𝜌𝑏𝑗 ,−1) − 𝜈𝜎∗𝜃1(𝑀𝑎𝑥, 𝜌𝑏𝑗 ,−1)
]
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