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A B S T R A C T   

Crack images collected from civil infrastructures through unmanned aerial vehicles suffer from motion blur and 
insufficient resolution, which reduces the accuracy of microcrack detection. Therefore, an automatic microcrack 
detection method based on super-resolution reconstruction (SRR) and semantic segmentation is proposed. Super- 
resolution (SR) images reconstructed by the proposed deep learning-based SRR model were input into the 
proposed semantic segmentation network for crack segmentation, and the length and width of cracks were 
measured through an improved medial axis transform approach. The accuracy of crack segmentation and feature 
quantification for SR images obtained using the deep learning-based SRR is significantly improved compared 
with low-resolution fuzzy images. The effects of three parameters on the results were analyzed. Compared with 
the Bicubic testset, the Intersection-over-Union of the SR testset is improved by 17% when a magnification factor 
of 4 is adopted. The results show that the proposed method achieves good performance in detecting concrete 
cracks.   

1. Introduction 

Computer vision (CV)-based techniques for structural damage 
detection and diagnosis have received much attention in the monitoring 
of civil infrastructures including highways, bridges, railways and tun-
nels [1]. Structural crack information provides an important basis for 
assessing the safety and durability of concrete structures, and it is of 
great significance for detecting cracks accurately [2]. Crack detection 
techniques based on CV and unmanned aerial vehicles (UAVs) are 
widely used in practical engineering because of the low cost, easy 
operation, non-contact and intuitive interpretation of the observed data 
[3,4]. With the increasing volume and complexity of the data collected 
from structures, traditional digital image processing (DIP) algorithms, 
including the threshold segmentation [5], edge detection [6], wavelet 
transforms [7], etc., may extract features excessively or incorrectly, 
which makes the subsequent data processing and analysis time- 
consuming, cumbersome, and even inaccurate [8]. Therefore, process-
ing and analyzing the collected image data accurately and effectively 
has become the frontier and the focus of the research on structural 

health monitoring and detection. 
With the vigorous development of deep learning, convolutional 

neural networks (CNNs) can be applied to automatically acquire the 
characteristics of images in the supervised learning process without 
prior knowledge. Compared with the characteristics extracted by the 
traditional DIP techniques, the characteristics learned by the CNN pro-
cess can represent the texture features of images more accurately and 
robustly [9]. There have been many experimental studies on automatic 
crack detection and assessment based on the CNNs [10], which mainly 
included two aspects: (1) drawing the bounding boxes of crack regions 
[11,12], and (2) segmenting the cracks at the pixel level through se-
mantic segmentation [13,14]. From the perspective of region-based 
deep CNNs, Cha et al. first introduced the deep CNN architecture for 
crack detection based on sliding windows [15], and subsequently 
introduced the faster regional convolution neural network (Faster 
RCNN) to improve the performance of the crack detection model [16], in 
which the high-quality crack images used for model training were 
collected under controlled conditions. Therefore, it is difficult for the 
trained model to test new images captured from other complex scenes 
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[17]. To overcome this shortcoming, the CNN models were then trained 
with various crack images containing complex background information 
[11,18], and the effects of noise [19] and light condition [20] on the 
segmentation accuracy were investigated. Actually, cracks usually 
appear as thin black bands with different angles and directions. Region 
proposal-based target detection algorithms can detect cracks well, but 
cannot provide accurate information about the direction and size of 
cracks. Therefore, some semantic segmentation frameworks were pro-
posed for pixel-level identification of cracks on the surface of concrete 
structures, including the fully convolutional network (FCN) [21,22], the 
U-shaped network (U-Net) [23], the segmentation network (SegNet) 
[24] and their various variants [25]. 

Even though many of the deep learning-based techniques described 
above can be used to detect cracks successfully, there are still some 
critical technical issues that need to be addressed urgently [26]. In fact, 
the performance of CV-based crack detection models highly depends on 
the quality of crack images collected under different conditions [27]. 
UAVs are a common and efficient way to collect surface images of 
concrete structures [28]. However, UAVs will vibrate and cannot get too 
close to the target structure for the sake of safety during the image 
collection process [29], which may result in motion blur and insufficient 
resolution of the collected images. These problems may lead to the loss 
of image information and make it more difficult to detect cracks, 
resulting in a large number of thin cracks not being detected [27,30]. 
There exist many conventional image processing techniques for 
improving image quality, including the unsharp mask filtering, median 
filtering and histogram equalization [26]. However, these techniques 
improve the image quality based on the existing pixel points of the 
image rather than by enhancing the image resolution, which contributes 
little to the performance of crack detection models [31]. Super- 
resolution reconstruction is a new technology that can solve the prob-
lems of motion blur and insufficient resolution of images [32], and it can 
be based on three types of algorithms, including the interpolation al-
gorithm, reconstruction algorithm, and machine learning algorithm 
[33]. These SRR algorithms all have their limitations. The interpolation- 
based algorithm simply performs operations on pixel points, and is 
prone to blurring images due to the loss of too many details. The 
reconstruction-based algorithm overcomes the difficulty with the 
interpolation-based algorithm in introducing prior knowledge, but it is 
not effective for the reconstruction of images with rich textures. The 
traditional machine learning-based algorithm can obtain more accurate 
results compared with the other two algorithms, but it is time- 
consuming to reconstruct and difficult to optimize the model [34]. 

Numerous research results have shown that the deep learning-based 
SRR can be used to address the above-mentioned technical obstacles in 
the automatic detection of structural cracks based on UAVs and CV [35]. 
The super-resolution convolutional neural network (SRCNN) was the 
first deep learning network proposed for SRR [36]. Subsequently, a se-
ries of SRR networks based on deep learning have been developed for 
improving the performance of SRR, including super-resolution genera-
tive adversarial network (SRGAN) [37], enhanced deep super-resolution 
(EDSR) network [38], residual channel attention network (RCAN) [39] 
and super-resolution feedback network (SRFBN) [40], etc. These deep 
learning-based SRR techniques have been successfully applied in various 
fields, including medical imaging [41,42], object detection [43] and 
face recognition [44]. However, the aspect ratio of the target object to be 
reconstructed in these studies is relatively small, while the aspect ratio 
of the crack structure is large, which presents a different challenge for 
processing crack images through the SRR networks. Few studies have 
used these techniques to improve the performance of crack detection 
[26,32,45,46]. Bae et al. compared the SR images reconstructed by the 
proposed SrcNet model with the low-resolution (LR) images, and the 
results showed that image SR can effectively improve the recall of 
detection, but there is a significant decrease in detection accuracy [26]. 
Sathya et al. concluded that SRR can significantly improve crack clas-
sification accuracy, but the extent of the effect on crack segmentation 

accuracy was not explored [32]. Kondo et al. [45] and Kim et al. [46] 
concluded that the crack segmentation accuracy was significantly 
improved with SRR for LR crack images, but the effect of SRR on the 
quantification of crack features was not considered. Although a general 
framework for SRR was demonstrated in the above work, the impact of 
various SRR networks and magnification factors on crack reconstruction 
had not been fully studied before. 

The purpose of the study is to propose a method to improve the 
detection accuracy for thin cracks in fuzzy images based on the deep 
learning and semantic segmentation network. Firstly, a training dataset 
for the deep learning-based SRR was constructed, and the networks for 
SRR based on different deep learning algorithms were trained with the 
prepared dataset. The quality of reconstructed crack images obtained 
from the trained networks was initially evaluated with metrics of peak 
signal-to-noise ratio (PSNR) and structural similarity (SSIM). Secondly, 
the proposed network for semantic segmentation, i.e. the CDU-Net, was 
trained with the original high-resolution (HR) crack dataset, and the 
trained model was used to identify the cracks of different testsets 
(namely, the original HR testset, the testset reconstructed by bicubic 
interpolation, and the testset based on deep learning SRR model), and 
the identification results were compared and analyzed. Thirdly, the 
skeletons of the crack segmentation maps were extracted and the crack 
features including length and width were quantified according to the 
improved medial axis transform (MAT) algorithm. Finally, the influence 
of different training datasets for SRR on the reconstruction effect was 
discussed, the segmentation results of the proposed CDU-Net were 
compared with the FCN and U-Net, and the segmentation accuracy of 
the crack images reconstructed with different magnification factors was 
analyzed. 

The contents of this article are organized as follows. The flowchart of 
the proposed method is described in Section 2, including the process of 
SRR, the structure of the CDU-Net, and the quantification of crack fea-
tures based on the improved MAT method. In Section 3, the imple-
mentation details and dataset preparation are presented, followed by the 
results of the experiments using different SRR algorithms and the 
comparative evaluation of the results through multiple metrics. The 
effects of three key parameters on the results are discussed in Section 4, 
followed by the conclusions in Section 5. 

2. Proposed methodology 

The flowchart of the proposed methodology is presented in Fig. 1. In 
the first step, the crack images, consisting of blurred or LR images, are 
reconstructed into HR images using the deep learning-based SRR model. 
The model learns the nonlinear mapping function between the LR and 
HR images from the training dataset, and then the new HR image cor-
responding to an LR image is reconstructed based on the learned map-
ping function. The second step is to perform pixel-level segmentation on 
the reconstructed crack images through the trained crack segmentation 
model, which is used to mark each pixel in the area of cracks. The third 
step is to quantify the crack features from the pixel-level segmentation 
results according to the improved MAT method. The details are illus-
trated in Sections 2.1 to 2.3. 

2.1. Super-resolution reconstruction 

In recent years, various deep learning networks for SRR of images 
have been proposed [33]. As shown in the left of Fig. 1, to train the SRR 
model, a training set needs to be constructed, in which the LR images are 
downsampled from a series of corresponding HR images by the image 
degradation model. Then, the SRR model is constructed by selecting an 
appropriate deep network, and optimal hyper-parameters (e.g., loss 
function, learning rate, etc.) and network parameters are continuously 
optimized based on the mentioned dataset to obtain the feature. Finally, 
new LR images are input into the trained SSR model, and the quality of 
the output SR images is evaluated. In the following sections, the deep 
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learning-based SRR networks used in the study are described, the 
training details are introduced, and the commonly used evaluation 
metrics for the quality of SRR images are presented. 

2.1.1. Network architectures 
Many improved SRR models have been proposed by scholars based 

on different network design strategies, including linear networks [36], 
residual learning networks [47], dense connection networks [48], 
recursive learning networks [33], and generative adversarial networks 
[49]. Linear networks, including SRCNN [36], fast super-resolution 
convolutional neural network (FSRCNN) and efficient sub-pixel con-
volutional network (ESPCN), have simpler structures, but cannot use all 

the information of image features to reconstruct new images. The re-
sidual learning networks, including super-resolution residual network 
(SRResNet), EDSR [38], residual dense network (RDN) [50] and 
enhanced residual network (ERN), can avoid the gradient degradation 
problem of deep neural networks and converge quickly. The dense 
connection networks (i.e., super-resolution dense network (SRDense-
Net), RDN, and deep back-projection network (DBPN) [51]) are 
designed based on the dense connection strategy, which can effectively 
resolve the problem of vanishing gradient and reduce the model size 
without degrading the model performance due to the property of reusing 
features. Recursive learning strategies have also been introduced into 
some algorithms (e.g., SRFBN, deeply-recursive convolutional network 

Fig. 1. Flowchart of the proposed methodology.  

Fig. 2. Schematic depiction of SRR network architectures.  
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(DRCN), deep recursive residual network (DRRN), etc.) for model 
improvement [35]. The generative adversarial networks (GANs) [49], 
including SRGAN [37], enhanced super-resolution generative adversa-
rial network (ESRGAN) [52] and super-resolution with feature 
discrimination (SRFeat), can also be used to train the SRR models to 
obtain high-quality images. In the present study, five representative 
networks designed based on each network strategy were selected to 
obtain SRR models and the architectures of these networks are shown in 
Fig. 2, in which Conv denotes the convolutional layer and Deconv de-
notes the deconvolutional layer. 

EDSR was developed from the SRResNet by removing the batch 
normalization (BN) layer from the residual block (ResBlock) and the L1 
loss function was adopted to optimize the network. Without the BN 
layer, EDSR can save about 40% of memory usage during the training 
process and can therefore stack more network layers and extract more 
features to achieve better performance with the same computational 
resources. The residual dense block (RDB) in RDN possesses the ad-
vantages of both the residual learning and dense connection, in which 
the input and output features of each layer are fused and reused and, 
therefore, can provide more clues for image reconstruction. The inno-
vation of DBPN lies in the proposed up-down projection module (i.e., Up 
Pro and Down Pro), which can learn the feedback errors between the LR 
and HR images through a series of tightly connected up-down sampling 
layers. DBPN incorporated features of different resolutions with 
different depths for image reconstruction, which enables the network to 
obtain more information and helps promote the reconstruction perfor-
mance. SRFBN was designed through a feedback block that uses recur-
sive learning, in which the high-level information flows through the 
feedback blocks (FB Block) in a top-down manner to correct low-level 
features with more contextual information. ESRGAN was modified 
from SRGAN with two steps. The first step was to introduce the residual 
in residual dense block (RRDB) to improve the generator structure, by 
removing the BN layer and using residual scaling. The second step was to 
use the relativistic average GAN to determine whether one image is 
more realistic than the other, thus enhancing the performance of the 
discriminator. 

2.1.2. Network training 
During the training stage, the model parameters need to be updated 

based on the loss calculation between each input LR image and the 
corresponding HR image. The network parameters of the CNN-based 
model are optimized by the L1 loss function and the loss function is 
minimized by the Adam optimization algorithm. The network parame-
ters of the GAN-based model are optimized by perceptual loss and 
adversarial loss, which can effectively improve the realism of the 
reconstructed images [52]. In the experiment, the maximum number of 
epochs, the batch size and the initial learning rate were set to be 100, 16, 
and 0.0001, respectively. The learning rate decay strategy was used for 
training networks to reduce the learning rate, which can be decreased by 
a factor of 2 after every 20 epochs. 

2.1.3. Evaluation metrics 
In the present study, both PSNR and SSIM were used to evaluate the 

reconstruction effect [33]. The PSNR shown in Eq. (1) is an index for 
measuring the similarity between two images, and a larger PSNR in-
dicates a higher similarity between two images. The SSIM is an evalu-
ation criterion for image quality, in which the brightness, contrast and 
structure of the image are considered to evaluate the similarity of two 
images. The SSIM is equal to 1 if the generated image is the same as the 
original one. The formulas for PSNR and SSIM are shown as follows: 

PSNR = 10× lg
2552 × W × H × C

∑W

i=1

∑H

j=1

∑C

z=1
[X(i, j) − Y(i, j) ]2

(1)  

SSIM(x, y) =
(
2μxμy + K1

)(
2σxy + K2

)

(
μ2

x + μ2
y + K1

)(
σ2

x + σ2
y + K2

) (2) 

In Eq. (1), W, H, and C denote the width, length, and channel number 
of the image, respectively; X denotes the SR image; and Y denotes the 
original image. In Eq. (2), μx and μy denote the mean values of image X 
and image Y, respectively; σx and σy denote the variance of image X and 
image Y, respectively; and σxy denotes the covariance of image X and 
image Y. Both K1 and K2 are constants adopted to avoid the denominator 
being zero. 

2.2. Crack segmentation 

2.2.1. Network architecture 
Although the classical U-Net improves the accuracy of crack seg-

mentation, the frequent pooling operations in the network result in the 
low-resolution feature map, leading to the loss of some image features 
and causing the missing detection of micro-cracks [53]. To overcome 
this shortcoming, the U-Net architecture is improved in three aspects. 
The first aspect is to replace the convolutional block in the encoding and 
decoding module of the classical U-Net with a recurrent residual con-
volutional (RRC) block that can capture the multi-scale features of crack 
images. The second aspect is to add a new dense atrous convolution 
(DAC) module to capture the deeper semantic features, which can retain 
more spatial information and improve the performance of crack seg-
mentation. The third aspect is to adopt a loss function that combines the 
cross-entropy loss and dice coefficient loss to solve the problem of pixel 
sample imbalance during the training stage of the crack segmentation 
network. The new architecture of the context-encoding network for 
crack segmentation (CDU-Net), modified from the classical U-Net, is 
shown in Fig. 3. The network is composed of a feature encoder module, a 
DAC module, and a feature decoder module [54]. 

The role of the encoder module is to extract context information and 
semantic features from images. In the classical U-Net architecture, each 
block has a max-pooling layer and two convolution (Conv) layers. To 
extract more detailed information from crack images and to improve the 
segmentation of low-contrast regions (e.g., thin cracks) in various 
backgrounds, the pre-trained Resnet34 is introduced to replace the 
traditional block, and the shortcut mechanism is added to avoid gradient 
vanishing as the neural network deepens and to accelerate the conver-
gence of the network. Besides, to improve the generalization ability of 
the network, the residual block in the original U-Net is optimized by 
adding a BN layer and rectified linear unit (ReLU) activation function 
before the convolutional layer. The modified residual blocks can deepen 
the network with fewer model parameters, obtain more abstract features 
of crack images and accelerate the training process. 

To utilize the multi-scale feature maps of crack images, the DAC 
module is added between the feature encoder module and the feature 
decoder module to obtain the high-level semantic characteristics [54]. 
As shown in the middle of Fig. 3, the DAC module performs four atrous 
convolution operations on the same feature map, which can increase the 
receptive field of the feature map without sacrificing its resolution. The 
receptive field of each branch from top to bottom will be 3, 5, 7, and 9, 
respectively. The DAC module can learn the crack information of 
different scales by combining atrous convolutions with different atrous 
rates. 

The function of the feature decoder module is to recover the high- 
level semantic features extracted from the previous modules into the 
HR image features. Commonly-used feature decoder operations include 
deconvolution and upsampling [54]. The feature decoder module pro-
posed in the present study consists of five convolution blocks, each 
containing one upsampling layer, one 2 × 2 transposed convolution 
(Trans Conv) layer, and a recursive residual convolution block with a 1 
× 1 convolution layer. The transposed convolutional layers can use 
adaptive mapping to recover features with more detailed information. 
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To solve the problems of local information loss and the decrease of 
feature map resolution caused by the max-pooling and convolution 
operation, the crack features obtained in the encoding and decoding 
processes are fused through skip connection. 

2.2.2. Training parameters 
The semantic segmentation of crack images is a binary classification 

problem [55] and the binary cross-entropy (BCE) loss function is a 
commonly-used loss function: 

LBCE = −
1
n
∑

[yilgpi +(1 − yi)lg(1 − pi) ] (3)  

where n is the total number of image pixels, yi is the label value of the i- 
th pixel, and pi is the predicted probability of the i-th pixel. Since the 
proportion of crack pixels in the detected images is very low, the BCE 
loss function cannot perform well in learning and recognizing cracks and 
tends to treat cracks as background information. Compared with the BCE 
loss function, the dice coefficient loss function can solve the problem of 
imbalance between positive and negative samples as shown in Eq. (4) 
[23]. 

LDice = 1 −
∑

piyi + ε
∑

(pi + yi) + ε −
∑

(1 − pi)(1 − yi) + ε
∑

(2 − pi − yi) + ε (4)  

where the meanings of the yi and pi are the same as those in Eq. (3), and ε 
is a constant. The reason for setting ε is that the gradient will vary 
greatly when yi and pi are too small, and will make the training more 
volatile and difficult. The combination of the BCE loss and dice coeffi-
cient loss can effectively deal with the problem of imbalanced positive 
and negative samples and make the model training process more stable. 
The combined loss function is calculated as follows [54]: 

LTotal = λ1LBCE + λ2LDice (5)  

where LTotal is the total loss; LBCE is the BCE loss; LDice is the dice coef-
ficient loss; λ1 and λ2 are the weighting factors to balance the BCE loss 
and dice coefficient loss, respectively. The Adam optimization algorithm 
was used to accelerate the convergence of model training. The values of 
the mini-batch size, initial learning rate, decay coefficient and training 
epoch were set to 4, 0.001, 0.9 to 0.999, and 200, respectively. 

2.2.3. Evaluation metrics 
The crack semantic segmentation can provide pixel-level informa-

tion such as coordinates and intensity of the crack region. Four 
commonly-used evaluation metrics, including precision, recall, F1-score 
and Intersection-over-Union (IoU), were adopted to evaluate the accu-
racy of obtained results [55]. The evaluation metrics are defined as: 

Precision = TP/(TP+FP) (6)  

Recall = TP/(TP+FN) (7)  

F1 − score =
2 × Precision × Recall

Precision + Recall
(8)  

IoU = TP/(TP+FN +FP) (9)  

where TP is the number of pixels of true cracks that have been detected 
correctly as cracks, FP is the number of pixels of non-cracks that are 
mistaken as cracks, and FN is the number of pixels of true cracks that are 
mistaken as non-cracks. It should be noted that the IoU of the foreground 
(cracks) was computed in this work. Calculating the IoU of the back-
ground cannot accurately reflect the effect of crack detection because 
more than 90% of the pixels in crack images are background and the 
proportion of the foreground is very small. 

2.3. Quantitative evaluation of crack features at the pixel level 

Obtaining the size of structural cracks is of great importance to 
accurately assess the state of structures and determine the maintenance 
schedule [21]. Morphological operations are commonly used to extract 
morphological characteristics of cracks and to reduce noises. The in-
formation about the crack skeleton can be extracted through the 
modified medial axis transform algorithm. Based on the obtained skel-
eton information, morphological characteristics of cracks (namely, 
length, width and area) can be obtained [56]. 

Due to the irregular shape of the cracks, the extracted crack skeleton 
is not a simple straight line [21]. Nevertheless, each crack can be divided 
into a series of curved segments based on the adaptive segmentation and 
the length of each curved segment can be calculated as the Euclidean 
distance between two endpoints [57]. Hence, the total length of the 
whole crack curve can be computed by accumulating the lengths of all 
segments, as defined in Eq. (10). 

Fig. 3. Schematic diagram of the CDU-Net architecture.  
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length =
∑n

i

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi2 − xi1)
2
+ (yi2 − yi1)

2
√

(10)  

where n denotes the number of segments of the crack, (xi1, yi1) and (xi2, 
yi2) denote the starting and ending points of the i-th segment of the 
crack, respectively. 

The minimum distance ld of each point on the skeleton to the 
boundary point can be obtained from the extracted skeleton informa-
tion, and the maximum width of the crack can be calculated from Eq. 
(11). Based on the segmentation results, the area of the crack can be 
derived from the number of crack pixel points, and the mean width can 
be calculated using Eq. (12). 

max-width = 2×max(ld) (11)  

mean-width = sum(pixel = crack)/length (12) 

To better evaluate the accuracy of the prediction and the effect of 
SRR on crack images, the absolute error and the relative error rate be-
tween the prediction and the true value are used to evaluate the per-
formance of the algorithm. The absolute error (AE) is calculated as: 

AE = Sp − Sg (13) 

The formula for the relative error rate (RER) is: 

RER =
(
Sp − Sg

)/
Sg × 100% (14)  

where Sp is the predicted value and Sg is the true value. 

3. Experimental results 

3.1. Datasets and experiment setup 

3.1.1. Datasets 
In this study, the dataset used for training the SRR model consists of 

two categories of images, the DIV2K dataset (natural scene) [58] and the 
crack dataset (mainly concrete structures). The DIV2K dataset consists of 
1000 natural scene images with a resolution of 1920 × 1080 pixels. One 
thousand sub-images with a resolution of 480 × 480 pixels with clean 
texture and clear edge were taken from the DIV2K dataset. The crack 
dataset consists of 1000 crack images with a resolution of 480 × 480 
pixels collected from the surface of concrete structures. To enhance the 
representation and generation ability of the SRR model, the following 
operations were performed to augment the training set: (1) flip images 
horizontally and vertically, (2) rotate images 180 degrees, and (3) scale 
images by the ratios of 0.6, 0.7, 0.8 and 0.9. After augmentation, the 
number of images in the training set was increased by 30 times, resulting 
in an HR image set. The LR image dataset was obtained by image 
degradation on the HR image dataset [59,60], and the image degrada-
tion model can be expressed as: 

g = (f ⊗ h)↓bicubic
s + η (15)  

where g denotes an LR image, f denotes an HR image, and h denotes the 
point spread function under the uniform linear motion module, ⊗ in-
dicates the convolution operation, ↓ is the downsampling operation, s is 
the magnification factor, bicubic is the interpolation algorithm, and η is 
the additive gaussian white noise. 

To increase the diversity of the training set as well as to improve the 
training efficiency, a set of sub-images of size lsub × lsub pixels were 
randomly cropped from LR images, and the HR images at the corre-
sponding positions were also cropped into sub-images of size slsub × slsub. 
These LR and HR sub-images were paired and used as training samples. 

The dataset, named Crack776, used for crack semantic segmentation 
was selected from the literature [21]. In the present study, the Crack776 
dataset was defined as the HR crack dataset, in which the image reso-
lution was uniformly adjusted to 320 × 320 pixels. The HR crack dataset 

was divided into the training set, validation set and test set, with a 
percentage of 70%, 10%, and 20%, respectively. The mean value of the 
crack widths in the HR images ranges from 4 to 8 pixels, and the 
downsampling factor was set to 4 to ensure sufficient information about 
the overall structure of the cracks in the LR images, while simulating 
most unfavorable conditions in practice. The LR testset with the reso-
lution of 80 × 80 can be obtained through downsampling the test set of 
the HR crack dataset (HR testset) by a factor of 4 according to the 
degradation model described in Eq. (15). All SR testsets were generated 
from the LR testset using different SRR models. To highlight the 
reconstruction effect of crack images based on the SRR deep learning 
model, the results were compared at the same image size, and a Bicubic 
testset of the same size as the SR testset can be obtained by interpolating 
the LR testset using the bicubic method. 

3.1.2. Experimental setup 
The main purpose of using SRR to reconstruct crack images is to 

obtain better SR images. The effects of five SRR models for crack 
reconstruction, including the EDSR, RDN, DBPN, ESRGAN, and SRFBN, 
were compared using the same procedure. First, the five different SRR 
networks were well trained using the same training dataset, and the 
trained models were then used to perform SR reconstruction of new 
crack images in the LR testset, and the quality of the reconstructed im-
ages was evaluated with PSNR and SSIM. Second, the proposed semantic 
segmentation network was trained with the training and validation sets 
from the original HR crack dataset, and the trained segmentation model 
was used to semantically segment the testsets including the HR, Bicubic 
and SR testsets. The precision, recall, F1-score and IoU were used to 
evaluate the results of semantic segmentation. Third, the crack features 
of the segmentation results of all testsets under consideration were 
quantified, and the reconstruction effects and the segmentation accu-
racy of different crack testsets were evaluated in terms of the length, 
maximum width and mean width of cracks. 

3.2. SRR for crack images 

The SRR training dataset was fed into the EDSR, RDN, DBPN, ESR-
GAN, and SRFBN for training, and the performance of the corresponding 
trained model was evaluated using the LR testset. Convergence of the 
model is achieved when the loss reaches a minimum and converges to a 
constant. Fig. 4 shows the convergence curves of PSNR and SSIM during 
the training process of the five networks. It can be seen from Fig. 4 that 
the tendencies of PSNR and SSIM are similar as the epoch increases, and 
each model tends to converge when the epoch reaches 40. Table 1 shows 
the comparisons of PSNR and SSIM of the reconstructed images obtained 
using the six methods and the parameters required. It can be seen from 
Table 1 and Fig. 4 that the PSNR and SSIM of all SRR methods based on 
deep learning are larger than those of the Bicubic method. Larger values 
of PSNR and SSIM suggest a better image reconstruction effect. It can 
also be seen from Table 1 that the PSNR and SSIM of the CNN-based SRR 
methods are significantly larger than those of the GAN-based SRR 
method. The main difference between the CNN-based SRR method and 
the GAN-based SRR method is the loss function, where the GAN-based 
SRR method used the perceptual loss to better reconstruct details of 
high frequency, while the CNN-based SRR method used the L1 loss. 
Compared with these algorithms, SRFBN has the best reconstruction 
results and requires the least number of parameters. 

Fig. 5 shows the original HR images and the corresponding recon-
structed images with different methods. It can be seen from Fig. 5 that 
the line texture reconstructed by the Bicubic method completely de-
viates from that of the real HR images, while the edge and texture details 
of the images reconstructed by deep learning-based methods are clearer 
and closer to the original images. Besides, the CNN-based and GAN- 
based reconstructed images are sharper than those of the Bicubic 
method. It should be noted that the high-frequency details of the CNN- 
based images are still insufficient and dense textures appear to be very 

C. Xiang et al.                                                                                                                                                                                                                                   



Automation in Construction 140 (2022) 104346

7

smooth, while the generated textures of the GAN-based images are still 
quite different from the reference images although they look more 
realistic. 

3.3. Semantic segmentation of reconstructed crack images 

The proposed CDU-Net was used to evaluate the quality of the 
reconstructed crack images. The training set and validation set in the HR 
crack dataset were adopted to train the CDU-Net. The variation of 
training loss and IoU of the validation set with the increasing number of 
epochs during the training process are shown in Fig. 6. It can be seen 
from Fig. 6 that the training loss decreases drastically at first and then 
gradually stabilizes to about 1 and that the IoU of the validation set 
increases drastically at the beginning and finally converges to about 
0.74. 

To verify the effectiveness of atrous convolution on improving the 

Fig. 4. Variation of the PSNR and SSIM with the increase of the number of epochs.  

Table 1 
Metrics of different methods on the LR testset.  

Metrics Bicubic EDSR RDN DBPN ESRGAN SRFBN 

PSNR (dB) 30.24 35.23 35.27 35.29 33.10 35.30 
SSIM (%) 77.51 87.81 87.84 87.89 82.01 87.93 
Number of Parameters / 43,089,947 22,271,107 10,426,358 14,499,401 3,631,478  

Fig. 5. Comparison of the visual effects of the reconstructed images based on the six methods.  

Fig. 6. Variation of training loss (Train_Loss) and IoU of the validation set 
(Val_IoU) with the increasing number of epochs. 
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receptive field and learning multi-scale features, experiments were 
conducted on the segmentation performance of three different networks. 
N1 is the network with the DAC module used in the study, N2 is the 
network with all dilation rates in the DAC module set to 1, and N3 is the 
network without the DAC module. All three networks have the same 
parameters except for different settings at the DAC module. The three 
networks were trained with the same training parameters, and the 
training models are tested on the HR test set. The segmentation results 
are shown in Table 2, from which it can be seen that the N1 model has 
the best segmentation results and the N3 model has the worst segmen-
tation results. The results show that although the size of the input feature 
map is small, the DAC module enables the network to extract features 
from different receptive fields, thus increasing the width of the network, 
enriching its information, and improving its performance. 

Crack segmentation evaluation metrics were used to evaluate the 
segmentation results of all testsets reconstructed with the Bicubic 
method and five SRR methods based on deep learning. Table 3 shows the 
segmentation results of the HR testset, Bicubic testset, and SR testsets 
obtained by different algorithms. As can be seen from Table 3, the HR 
testset achieves the highest precision (84.51%), recall (85.22%), F1- 
score (84.86%), and IoU (73.57%). It should be noted that the FCN 
proposed by Yang et al. [21] used the same dataset, and their achieved 
precision, recall and F1-score were 82%, 79% and 80%, respectively, 
which are all lower than those obtained by the proposed CDU-Net. The 
Bicubic testset achieves the worst results and all metrics are at least 15% 
less than that achieved by the HR testset. The values of the four metrics 
of the SR testsets are very close and also much larger than those of the 
Bicubic testset. Compared with the results of the Bicubic testset, the F1- 
score and IoU of the SR testsets are improved on average by 13% and 
17%, respectively. 

To visualize the difference between the crack images reconstructed 
by different algorithms, the segmentation results of some cracks recon-
structed by different algorithms are shown in Fig. 7, in which the orig-
inal labels are also included for comparison. It can be seen from Fig. 7 
that the proposed segmentation network can achieve more accurate 
segmentation in the HR testset, and the detected cracks match the 
original labels best in terms of the overall structure and details of cracks. 
The thin cracks reconstructed by the Bicubic method are difficult to be 
detected, and the identified cracks are significantly wider than the 
ground truth labels. By contrast, most of thin cracks in the SR testsets can 
be well detected, and the accuracy of segmenting some thin cracks is 
much better than that of the HR testset. This may be because the edges of 
some thin cracks in the HR testset are blurred, while edge sharpening is 
implemented in the SRR algorithm. The detection results of different SR 
testsets are almost the same in the segmentation accuracy and are much 
better than those from the Bicubic testset. 

3.4. Quantitative analysis results of crack features 

In the practice of crack inspection, the length and width information 
of cracks is usually desired. Hence, the pixel-level segmentation results 
of different reconstructed datasets were calculated based on the method 
mentioned in Section 2.3. 

The skeleton extraction operation was performed on the segmenta-
tion results of each testset and the ground truth label. The semantic 
segmentation results of the testsets reconstructed by different deep 
learning-based SRR algorithms do not vary much. Therefore, two 
representative semantic segmentation results (i.e., SRFBN, ESRGAN) 
were selected for comparison. Fig. 8 shows the skeleton extraction 

results of the HR testset, the testsets reconstructed by the selected two 
methods, the testset obtained by bicubic interpolation, and the real la-
bels, in which the L, MW and AW represent the length, maximum width 
and average width of the cracks, respectively. It can be seen from Fig. 8 
that the crack skeleton of the HR testset is consistent with the real 
skeleton, which proves the effectiveness of the proposed segmentation 
network and skeleton extraction algorithm. Due to the poor segmenta-
tion results of the Bicubic testset, the extracted skeleton obtained from 
the Bicubic testset differs greatly from the real skeleton, and the pre-
dicted crack widths are all significantly larger than the true values. The 
crack skeletons obtained from the SR testset match well with that ob-
tained from the HR testset, indicating that the deep learning-based SRR 
algorithm performs well in terms of reconstruction. 

Fig. 9 shows the histogram of the quantification error of the crack 
features, which reflects the difference between the predicted results and 
the true values of the label. It can be seen from Fig. 9 that the AEs of 
crack length, maximum width, and mean width in the segmentation 
results of the HR testset are 33.3 pixels, 2.2 pixels, and 1.0 pixels, 
respectively, and that the RERs of crack length, maximum width and 
mean width are about 6%, 10%, and 7%, respectively. It can be seen 
from Fig. 9 that the segmentation results of the Bicubic testset are very 
poor. The AEs of crack length, maximum width, and mean width of the 
Bicubic testset are 96.1 pixels, 3.8 pixels, and 2.0 pixels, respectively, 
and the RERs of the three features are around 13%, 19%, and 24%, 
respectively. The errors of segmentation results achieved from each SR 
testset are similar, and the average AEs of crack length, maximum width 
and mean width of all SR testsets are reduced by 59.1 pixels, 1.7 pixels 
and 0.9 pixels, respectively, compared to that obtained from the Bicubic 
testset. 

4. Discussion 

Since the effects of different SRR algorithms on the results are almost 
the same, only SRFBN was chosen to demonstrate the robustness of the 
proposed method. Three aspects were discussed as follows: (1) The ef-
fects of training sets on the reconstruction effect and semantic seg-
mentation results were studied; (2) The performance of the proposed 
network and the commonly used semantic segmentation networks were 
compared; (3) The effects of magnification factors used in reconstructing 
images on the accuracy of crack semantic segmentation were 
investigated. 

4.1. Effect of the training set on SRR 

Adopting a dataset consisting of images captured from different 
scenes for model training is the key to obtaining high-quality images of 
super-resolution reconstructed cracks [32]. Especially, datasets 
including more realistic images with different textures and geometric 
features will contribute to improving the reconstruction accuracy of 
local cracks [61]. To investigate the effects of different datasets on the 
SRR of crack images, SRFBN was trained using three training sets 
separately, including Dataset A with images of natural scenes (DIV2K) 
only, Dataset B with crack images of concrete structures only and 
Dataset C consisting of both natural scene images and concrete crack 
images. The three datasets have the same number of images, where the 
ratio of natural scene images to concrete crack images in Dataset C is 1:1. 
After training SRFBN with the three datasets separately, the LR testset 
was fed into the corresponding SRFBN model trained with the three 
datasets to obtain three SR testsets. The CDU-Net was selected to eval-
uate the three SR testsets at the pixel level, and the reconstruction and 
segmentation results evaluated with different metrics are shown in 
Table 4. It can be seen from Table 4 that the quality of the reconstructed 
crack images is affected by the image types in the training sets, and 
Dataset C achieves the best reconstruction results. It can also be seen 
from Table 4 that Dataset A achieves better results than Dataset B as the 
former is collected from a variety of real scenes containing rich texture 

Table 2 
Segmentation results for the different nets.  

Metrics (%) N1 N2 N3 

F1-score 84.86 83.83 82.38 
IoU 73.57 72.16 70.44  
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Table 3 
Evaluation metrics of segmentation results of the testset reconstructed by different algorithms.  

Metrics (%) HR Bicubic EDSR RDN DBPN ESRGAN SRFBN 

Precision 84.51 68.52 83.69 83.53 83.45 83.99 83.59 
Recall 85.22 70.58 81.68 81.90 81.92 80.74 81.95 
F1-score 84.86 69.54 82.67 82.71 82.68 82.33 82.76 
IoU 73.57 53.30 70.46 70.51 70.47 69.97 70.59  

Fig. 7. Qualitative comparison of segmentation results of various testsets.  

Fig. 8. The skeleton extraction results of some testsets.  
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features. Although Dataset B is similar to the test set, only the crack 
region in Dataset B contains fewer distinct texture features and edge 
information, so the reconstruction is less effective. Dataset C contains 
both crack images of the same type as the test set and natural scene 
images with richer texture information, which makes the learning of the 
network more relevant to crack and leads to the best reconstruction 
results of the trained model. 

4.2. Effect of the adopted semantic segmentation network on SSR 

To investigate the effect of the semantic segmentation networks on 
the results, six other networks, i.e., FCN-8s, FCN-16s, FCN-32s, U-Net, 
UNet-resnet18, and UNet-resnet34, were trained with the training set 
and validation set in the HR crack dataset, and then they were tested on 
the HR testset, Bicubic testset, and SR testset, respectively. Fig. 10 shows 
the variation of the training loss and the IoU on the validation set with 
the increasing number of epochs when the six networks were trained on 
the HR crack dataset. 

The segmentation results of seven networks on the three testsets are 

shown in Table 5. It can be observed from Table 5 that the network 
proposed in the present study performs the best among all networks on 
the three testsets and that all networks achieve the largest IoU on the HR 
testset and achieve the smallest IoU on the Bicubic testset. It can also be 
observed from Table 5 that the three U-Net networks achieve larger IoU 
on the three testsets than that obtained by the three FCN networks and 
that the three U-Net networks obtain larger IoU on the three testsets as 
the network depth increases. The 8s, 16s and 32s in the three FCN 
networks represent the downsampling factors, and the FCN networks 
achieve smaller IoU on the HR testset and SR testset, and larger IoU on 
the Bicubic testset as the multiplier increases. Specifically, the IoU of the 
proposed network is the highest on each testset, and the IoU on the HR 
testset is 73.57%, with a percentage of 3.9% larger than that of the 
classical U-Net. Fig. 11 shows the segmentation results of the six net-
works tested on the HR, Bicubic, and SR testset, from which the pro-
posed network in the study achieves the best results for crack 
segmentation. 

4.3. The influence of SRR magnification factor 

As seen from previous studies, the reconstruction effect of SR images 
is significantly affected by the magnification factor [40]. The SRR 
magnification factor is the upsampling factor that increases the LR 
image size to the HR image size. The upsampling operations were also 
illustrated in the network structures shown in Fig. 2. It is necessary to 
find an optimal magnification factor to apply the SRR technology in the 
engineering field. Hence, SRR was performed on the same LR images, 
and the crack segmentation performance of the reconstructed images 
with different magnification factors was investigated. 

The procedures of the experiment were introduced as follows. The 
images with a resolution of 320 × 320 in the Crack776 dataset were 
defined as the HR crack dataset, and the HR crack dataset was divided 
into the training set, validation set and test set, with a percentage of 
70%, 10%, and 20%, respectively. The images with a resolution of 80 ×
80 were obtained by downsampling the images of the HR crack test set 
with a factor of 4 according to the degradation model described in Eq. 
(15), which were denoted as the x1-LR testset. The x1-LR testset was 
used to represent the LR fuzzy dataset collected in realistic scenarios, on 
which the deep learning-based SRR was performed. SRFBN was chosen 
as the SRR network and the magnification factors were set to 2,3,4, and 
5. The HR dataset for training the SRR-x2 model was the HR dataset 
mentioned in Section 3.1.1, and the LR dataset was downsampled by the 
factor of 2 from the HR dataset according to the degradation model 
described in Eq. (15). The HR dataset and the LR dataset with a factor of 
2 were fed into SRFBN to train the SRR-2 model. The x1-LR testset (LR 
crack dataset) was fed into the SRR-2 model to obtain the x2-SR testset 
(160 × 160). The x3-SR testset (240 × 240), x4-SR testset (320 × 320), 
and x5-SR testset (400 × 400) were generated by a similar process to the 

Fig. 9. Histogram of quantified error of crack features for all testsets.  

Table 4 
Reconstruction and segmentation results evaluated with different metrics.  

Metrics Dataset A Dataset B Dataset C 

PSNR 35.12 34.08 35.30 
SSIM (%) 87.59 85.11 87.93 
Precision (%) 82.95 81.52 83.59 
Recall (%) 81.43 77.90 81.59 
F1-score (%) 82.18 79.67 82.76 
IoU (%) 69.76 66.21 70.59  

Fig. 10. Variation of training loss and IoU on the validation set with the increasing number of epochs.  
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x2-SR testset that were reconstructed with the corresponding magnifi-
cation factor. The training set and validation set in the HR crack dataset 
were fed into the CDU-Net to train the optimal segmentation model, 
which was then used to segment the testset consisting of reconstructed 
crack images with different factors. 

The segmentation performance of the crack images reconstructed by 
the SRR algorithm with different magnification factors can be repre-
sented by the Precision-Recall (P-R) curves. Fig. 12 shows the P-R curves 
of the segmentation results for different crack testsets, in which x(m)-SR 
represents the segmentation results on the SR testset magnified by the 
factor m, and x1-LR represents the segmentation results on the x1-LR 
testset, in which F1 represents the evaluation metric F1-score. Fig. 13 
illustrates the segmentation results of some reconstructed crack images 
with different magnification factors, and Fig. 14 demonstrates the 
variation of segmentation results (i.e., F1-score, IoU) with the SRR 
magnification factor. It can be seen from Fig. 14 that the F1-score and 
IoU of the reconstructed images increase dramatically at first with the 
increase of the magnification factor and then tend to stabilize. As ex-
pected, as the magnification factor increases the difference between the 
segmentation map of the reconstructed images and the ground truth 
label becomes smaller but the time required to reconstruct an image 
becomes longer. Therefore, a good balance between the segmentation 
accuracy and the computational efficiency can be achieved by adopting 
a magnification factor of 4. 

Table 5 
The segmentation results of different networks on various testsets.  

Metrics Datasets FCN-8 s FCN-16 s FCN-32 s U-Net UNet-resnet18 UNet-resnet34 Ours 

IoU (%) 
HR 69.98 67.46 66.34 69.65 71.22 72.84 73.57 
Bicubic 36.33 41.25 42.03 48.76 49.07 51.60 53.30 
SR 64.99 64.06 63.42 67.05 68.49 70.35 70.59  

Fig. 11. Segmentation results of different networks on HR, Bicubic, and SR testset.  

Fig. 12. P-R curves for the segmentation results of reconstructed crack images 
with different magnification factors. 
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5. Conclusion 

To solve the problems of motion blur and insufficient resolution 
encountered in the process of image acquisition for infrastructure crack 
detection using UAVs, an automatic detection method for microcracks is 
proposed in this study based on deep learning SRR and semantic 

segmentation. Firstly, a deep learning-based SRR technique was used to 
reconstruct the LR images. Then, a new pixel-level crack segmentation 
network (i.e., CDU-Net) was proposed for segmenting reconstructed 
crack images. Finally, the length and width of the cracks were quantified 
by an improved medial axis transform algorithm. 

The segmentation results of different SR datasets and the quantifi-
cation of the crack features in the segmentation maps were investigated 
in detail. The results show that the current mainstream deep learning 
algorithms for SRR give similar results of crack image reconstruction 
from the perspective of visual observation and various evaluation met-
rics. SRFBN has the best reconstruction effect and requires the least 
number of parameters. The CNN-based and GAN-based reconstruction 
methods achieve better results than the Bicubic method in terms of 
sharpness of the reconstructed images. The accuracy of crack segmen-
tation and feature quantification of SR images obtained using the deep 
learning-based SRR is much better than that of the low-resolution 
blurred images (i.e., the images obtained by the Bicubic method) and 
is almost the same as that of HR images. The CDU-Net presented in this 
study achieves the highest precision (84.51%), recall (85.22%), F1-score 
(84.86%), and IoU (73.57%) on the original HR testset, which are 
significantly better than other networks. The F1-score and IoU obtained 
from the SRFBN testset reached 82.76% and 70.59%, which are 13% and 
17% higher than that from the Bicubic testset, respectively. Compared 
with the Bicubic testset, the AEs of crack length, maximum width and 
mean width obtained from the SRFBN testset are reduced by 59.1 pixels, 
1.7 pixels and 0.9 pixels, respectively. The comparative study shows that 

Fig. 13. Segmentation results of images from SR testsets obtained with different magnification factors.  

Fig. 14. The variation of segmentation results with SRR magnification factor.  
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the method proposed in the present study has better performance in 
detecting concrete cracks, especially for thin cracks. 

The influence of different training datasets used for SRR on the 
reconstruction effect was discussed. It can be concluded that the training 
set incorporating natural scene images with crack images performs the 
best. The proposed crack segmentation network CDU-Net was also 
compared with FCN and U-Net, and the proposed network can achieve 
better crack detection results than the classical FCN and U-Net. Finally, 
the segmentation accuracy of crack images with different magnification 
factors was analyzed. The segmentation accuracy of the SR testset in-
creases with the increase of magnification factor and then tends to sta-
bilize. Therefore, it is very meaningful to use SRR with appropriate 
magnification factors in practice to improve the accuracy of pixel-level 
segmentation for microcrack detection. It is also found that a good 
balance between the segmentation accuracy and the computational ef-
ficiency can be achieved by adopting a magnification factor of 4. 

However, the crack detection method proposed in the study still 
needs two separate stages, which may not fulfill the demand for real- 
time crack detection. In future studies, a new optimized network that 
can incorporate super-resolution reconstruction and semantic segmen-
tation will be investigated. Also, the degradation model used in this 
study contains only a fixed number of basic degradation methods, while 
the degradation process in real life is diverse and usually contains 
multiple degradation factors, such as imaging systems, blur types, and 
compression methods, which lead to complex degradation simulation. 
To deal with more practical degradations, the classical degradation 
model will be further extended to a higher-order degradation model or 
modified to include more diverse fuzzy kernels. 
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