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A B S T R A C T

With the rapid development of freight transportation, truck overloading becomes very common and severe,
posing a great threat to the safety of bridges, and it can even result in bridge failure. Traditional approaches
investigating the overloading-induced fatigue damage on bridges, such as finite element analysis (FEA) and
reliability analysis, have proven to be computationally expensive and model dependent. In this study, the
prediction of fatigue failure probability of bridges due to traffic overloading was investigated by using the
feedforward neural network and the Monte Carlo method. Our results show that based on a finite set of training
data for the bridge under consideration, the proposed machine-learning-based approach can assist in providing
an instantaneous assessment of the fatigue failure probability with high accuracy.

1. Introduction

Steel girder bridges, which are the most common bridge type in the
United States [1], are vulnerable to fatigue damage under cyclic vehi-
cular loading. Due to the rapid development of freight transportation,
truck overloading becomes very common and severe worldwide. Re-
petitive vehicular overloading could induce large number of stress cy-
cles, which reduce the safety of bridges and can even lead to fatigue
failure. According to the survey by Hobbacher et al. [2], overloading
and fatigue have been the two leading causes of the damage of com-
posite and steel bridges. It is therefore strongly necessary to investigate
the fatigue damage of steel girder bridges under vehicular overloading
conditions.

Numerous studies have been conducted on vehicle-induced fatigue
damage on bridges based on deterministic analysis methods, such as
numerical simulations, experiments, traffic surveys, and site tests. Cha
et al. [3] estimated the effect of overloaded vehicles on the durability of
steel girder bridges using the finite element (FE) model updating ap-
proach adjusted by field inspection data. Chen and Li [4] utilized the
traffic investigation to evaluate the deterioration of a reinforced con-
crete bridge due to the vehicle-induced fatigue damage. Wang et al. [5]
proposed a design method, which was based on the vehicle-bridge
coupled system, for new bridges considering vehicular overloading in-
duced fatigue damage. Deng and Yan [6] further proposed an over-
weight permit checking method for existing bridges based on numerical

simulations.
It should be noted that the most important part of the aforemen-

tioned approaches is to obtain the equivalent stress under traffic
loading. In the AASHTO approach [7], a truck model with deterministic
configurations as developed based on a large number of traffic survey
data was adopted to represent the real traffic. However, it was criticized
that the deterministic parameters cannot reflect the large variability in
the parameters of real traffic [8], especially under conditions with
overloaded trucks which are not considered in the current AASHTO
LRFD code [7]. Moreover, the fatigue failure is a result of the damage
accumulation and greatly influenced by the uncertainties from both
truck traffic and bridge parameters [9]. Hence, it is more appropriate to
estimate the fatigue damage based on probabilistic approaches [8,10].
It should be noted that all the aforementioned methods are highly
computationally demanding due to the vast number of repetitive si-
mulations and therefore bring a significant challenge for efficient eva-
luation of fatigue damage.

Recently, machine-learning-based approaches have gained attention
owing to the capability of reducing the computational effort required
for fatigue assessment, and some achievements have been made. Based
on the dataset with a large number of crack patterns of reinforced
concrete slabs and the corresponding fatigue life, Fathalla et al. [11]
have developed an artificial neural network (ANN) to link the fatigue
life of RC bridge decks with the inspected surface cracks and attempted
to make a quick and quantitative prediction for the fatigue life of bridge
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deck slabs. Lu et al. [8] developed a probabilistic truck load model
based on the weigh-in-motion (WIM) data and utilized the uniform
design and support vector regression approach to substitute the time-
consuming FE simulations in assessing the fatigue reliability of steel
bridge decks under the loading of probabilistic truck model. Although
bridge deck is more vulnerable to the repetitive traffic loading, the
deterioration of deck slab does not necessarily threaten the bridge
safety [12]. Utilizing the same machine learning approach by Lu et al.
[8], Zhu and Zhang [13] further investigated the fatigue reliability of
the critical welded joints of a coastal cable-stayed bridge under sto-
chastic vehicle, wind, and wave loads. Despite considerable effort in the
fatigue reliability using machine learning, there is still a lack of ma-
chine-learning-based approach to assess the fatigue failure reliability of
steel girder bridges, especially under overloading conditions. Therefore,
it is desirable to provide an efficient approach of conducting prob-
abilistic fatigue analysis which can reduce the computational effort
required by traditional fatigue assessment methods.

In the present study, the fatigue failure reliability of a typical
composite steel girder bridge under vehicular overloading was in-
vestigated based on a machine learning algorithm. The deterministic
simulations were first performed to obtain the bridge responses under
overloading conditions. It is noted that the overloaded truck traffic was
considered as a combination of the axle-load-based (AL) overloaded
trucks and gross-weight-based (GW) overloaded trucks. Then, in order
to substitute time-consuming FE simulations, a feedforward neural
network was developed, trained, validated, and tested. Finally, the
trained artificial neural network was combined with the Monte Carlo
method to predict the fatigue failure probability of steel girder bridges
under the traffic overloading.

2. Traffic overloading

Besides the gross weight, vehicle-induced damage is also closely
related to the truck configuration, more specifically, the axle load.
Therefore, in this study, two overloading conditions, namely, the AL-
overloading and GW-overloading were considered. Two types of trucks,
the three- and five-axle trucks, were adopted to consider such over-
loading conditions, respectively. This adoption was based on the fact
that three-axle trucks are more likely to exceed the axle load limit while
five-axle trucks are more likely to exceed the gross weight limit. The
configurations of these two trucks are illustrated in Fig. 1. Specifically,
the configuration of the three-axle truck is based on the AASHTO HS
20-44 fatigue design truck, which was developed from the dimensions
of over 27,000 trucks collected from thirty sites all over the United
States [14] while the configuration of the five-axle truck is based on the
AASHTO type 3S2 truck, which was demonstrated to comprise nearly
half of the heavy trucks [15]. As a result, these two types of trucks
together are believed to be able to represent the actual overloaded truck
traffic.

According to Hwang and Nowak [16], highway traffic consists of
roughly 20% three-axle trucks and 80% five-axle trucks; therefore the
basic overloaded truck traffic was considered to consist of 20% AL-
overloaded trucks and 80% GW-overloaded trucks in this study.
Moreover, in this study, it was assumed that the proportion of the AL-
overloaded trucks (rAL) follows a truncated lognormal distribution with
a mean value of 0.2 and a coefficient of variation (COV) of 0.15.
Considering the fact that rAL always falls within the range between 0
and 1.0 under real traffic conditions, the corresponding lower and
upper limits were therefore taken as 0 and 1.0, respectively. By ad-
justing the proportions of trucks that are overweight on gross and axle
group, the actual traffic composition can be modified accordingly. Si-
milar approaches were adopted by other researchers [17].

Nomenclature

3D three-dimensional
A fatigue constant
ANN artificial neural network
AL axle-load-based
COV coefficient of variation
FD fatigue damage
FDΔ critical fatigue damage in terms of fatigue resistance
FD t( ) fatigue damage caused by overloaded trucks after t years

of service
FE finite element
FEA finite element analysis
GW gross-weight-based
g(X) fatigue failure function
m slope of the S-N curve

MSE mean squared error
nk number of cycles experienced corresponding to the kth

stress range Sk
Nk fatigue life in cycles corresponding to the kth stress range
Num number of truck passage in one year
Pf fatigue failure probability
rAL proportion of the AL-overloaded trucks in the traffic
rGW proportion of the GW-overloaded trucks in the traffic
Si stress range induced by the AL-overloaded trucks
Sj stress range induced by the GW-overloaded trucks
Sk kth stress range
t service time in years
W_AL gross weight of AL-overloaded truck
W_GW gross weight of GW-overloaded truck
WIM weigh-in-motion

Fig. 1. Truck models adopted.
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In order to explore the effect of traffic overloading on the fatigue
failure probability, the gross weights of the three- and five-axle trucks
were both treated as random variables with normal distributions but
with different mean values and COVs, as shown in Table 1. This as-
sumption was adopted from [16]. Moreover, only the gross weights
larger than that of the HS 20–44 and type 3S2 truck as specified in the
AASHTO LRFD code [7], namely, 320 kN, were generated according to
the corresponding distributions. According to the truck weight dis-
tribution based on the WIM data [18], the proportion of vehicles with
gross weights over 512 kN is only 0.09%. Therefore, the effective gross
weight for both the AL- and GW-overloaded trucks was set to be within
the range from 320 kN to 534 kN. Moreover, the axle weight distribu-
tions of the AL- and GW-overloaded trucks are assumed to be the same
as those of the AASHTO fatigue design truck and the type 3S2 truck,
respectively, as illustrated in Fig. 1.

3. Framework of probabilistic analysis based on machine learning

3.1. Computational framework

In this study, with the attempt to substitute the time-consuming
finite element analysis, the main work was conducted following three
parts, as shown in Fig. 2.

In Part I, the input variables were selected and generated stochas-
tically according to the corresponding distributions, and finite element
analysis for the prototype of bridge under the overloaded truck traffic
was performed to obtain the responses. Then, the rainflow counting
method was utilized to calculate the cumulative fatigue damage.
Finally, the limit state function of the fatigue damage accumulation was
developed and its value was considered as the output.

In Part II, an artificial neural network was built based on the Matlab
2014a-Neural Network Toolbox. This neural network was then trained,
validated, and tested based on the generated input and output data in
Part I until satisfactory predictions were reached. In Part III, based on
the trained ANN and the Monte Carlo method, the fatigue failure
probability of bridge due to traffic overloading was predicted.

3.2. FE model of the prototype bridge

According to survey results, nearly half of bridges in the United
States are composite steel girder bridges [1]. In this study, a typical
composite steel girder bridge with a concrete deck slab was selected to
illustrate the proposed framework. This bridge is a good representative
of the simply-supported composite steel girder bridges with concrete
deck slabs in the United States and has been widely used to investigate
the fatigue performance of bridges [5,19]. In this study, a three-di-
mensional (3D) FE model of this bridge was developed with ANSYS
software, as shown in Fig. 3. The bridge length is 30.48m and the deck
width is 9.75m. It has five identical steel girders evenly arranged with
an interval of 2.13m in the transverse direction and five identical steel
diaphragms spaced at a distance of 7.62m in the longitudinal direction.
The concrete bridge deck and the guardrail were all modeled by solid
elements and the steel girders and diaphragms were modeled by shell
elements. Similar schemes were adopted in many other studies to
achieve a good balance between computational effort and desired ac-
curacy [20–22]. The cross-section of the prototype bridge is shown in
Fig. 4. More details of the bridge are listed in Table 2.

It should be noted that the bridge adopted in this study has two
lanes, i.e., the fast lane and the slow lane as denoted by Lane 1 and Lane
2 in Fig. 4, respectively. According to statistics that over 90% of heavy
trucks travel in the slow lane [8], and in this study only the scenario of
overloaded trucks traveling in the slow lane was simulated, which is
also suggested by the AASHTO LRFD code [7] for fatigue evaluation of
bridges.

3.3. Probabilistic fatigue analysis

Under repetitive vehicular loadings, the number of stress cycles for
the bridge undergone increases, causing the fatigue damage to accu-
mulate accordingly. In this study, the limit state function for fatigue is
defined in Eq. (1). The condition g(X) < 0 implies the fatigue failure of
the bridge, and the probability of the event g(X) < 0 indicates the
probability of fatigue failure.

∑= −
=

g X FD FD t( ) ( )
i

t

Δ
1 (1)

where FDΔ denotes the critical fatigue damage in terms of fatigue re-
sistance; and FD t( ) is the fatigue damage caused by overloaded trucks
after t years of service.

In order to explore the fatigue failure probability for the bridge
under overloaded truck traffic, the influence factors (namely, the cri-
tical fatigue damage, the weight of overloaded trucks, the proportion of
AL-overloaded trucks, and service time) were considered in this study.
The critical fatigue damage (FDΔ) was assumed to follow a truncated
lognormal distribution with a mean value of 1.0 and a COV of 0.15
[23]. The critical fatigue damage generally ranges from 0.5 to 2.0 [4],
which were selected as the lower and upper limits of FDΔ, respectively.
In addition, the fatigue damage accumulation was calculated based on
the Miner’s rule integrated with the S-N curve in this study, which is
one of the most common approaches to calculate the fatigue damage, as
shown in the following:
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where nk and Nk denote the number of cycles experienced and the fa-
tigue life in cycles corresponding to the kth stress range Sk, respectively;
m denotes the slope of the S-N curve; and A denotes the fatigue con-
stant.

It should be noted that in spite of some other fatigue-prone struc-
tural components, the condition of bridge girders generally controls the
safety of girder bridges, and therefore the fatigue details of bridge
girders are the main target in the fatigue design of girder bridges.
Moreover, it has been demonstrated that the bending moment is more
critical than the shear force for the cross section design of small-to-
medium-span bridges. Therefore, the bending stress of the fatigue de-
tails at the girder mid-span generally governs the fatigue design of the
type of girder bridges under consideration [24]. According to the
AASHTO LRFD code [7], the corresponding fatigue details are the welds
connecting the bottom flange and the web of the steel girders, which
were selected in the present study and the values of m and A can be
taken as 3 and 3.93×1012MPa3, respectively. In fact, this location has
been selected as the representative fatigue detail for the fatigue study of
this kind of bridges in many other studies [5,25,26].

Considering the overloaded truck traffic with different truck
weights and different proportions of AL- and GW-overloaded trucks, the
induced fatigue damage (FD) can be rewritten as follows:
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where t denotes the service time in years, and it is assumed to follow a
uniform distribution starting from 1 to any specific year of interest,
such as the 225th year in this study; Num denotes the number of truck

Table 1
Statistics of parameters for three- and five-axle trucks.

Truck type Distribution type Mean value (kN) Standard deviation (kN)

Three-axle truck Normal 178 37
Five-axle truck Normal 290 76
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passage in one year; rAL and rGW denote the proportions of the AL- and
GW-overloaded trucks in the traffic, respectively; and Si and Sj denote
the stress range induced by the AL- and GW-overloaded trucks, re-
spectively. In addition, the traffic growth is not considered and Num is

calculated based on the average daily truck traffic (ADTT) suggested by
the AASHTO LRFD code [7], namely, Num=365×2000=730,000.

Then the limit state function of the fatigue damage can be updated
as follows:

∑ ∑= −
⎛
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⎜ +
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Δ
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Except for the distributions related to the gross weight of the AL-
and GW-overloaded trucks listed in Table 1, the distributions for other
variables selected in this study are summarized in Table 3.

The probability of the bridge fatigue failure due to traffic over-
loading during the service time, as defined in Eq. (5), is closely related
to the reliability of the bridge [27]. According to Helmerich et al. [28],
the target reliability index of existing bridges is generally in the range
from 2.0 to 3.5 and the reliability of 2.0 corresponds to a failure
probability of 2.3%. In this study, the target fatigue failure probability
was selected as 2.3%, which was also adopted in other studies [8,13].

= ⩽g XP  P( ( ) 0 )f (5)

3.4. Probabilistic prediction of fatigue failure based on machine learning

A main objective of the technical approach is to efficiently fit the
relationship between the output, namely, the value of g(X), and the
input variables, i.e., the gross weight of AL-overloaded trucks, gross
weight of GW-overloaded trucks, proportion of AL-overloading, service
time, and the critical fatigue damage. For this purpose, the feedforward
neural network is adopted to learn the complex relationship between
the input and output data. The feedforward neural network has proven
to be capable of fitting any mapping problems [29], and it has been
widely used in the civil engineering field due to its simplicity [30]. In
this study, the feedforward neural network was built based on the
platform of the Matlab R2014a-Neural Network Toolbox. The general
structure of the feedforward neural network is shown in Fig. 5. In this
study, the developed feedforward neural network has an input layer, an
output layer, and eight hidden layers.

Fig. 2. Flow chart of the proposed framework based on machine learning.

Fig. 3. 3D FE bridge model.

Fig. 4. Cross-section of the bridge under consideration.

Table 2
Basic properties of the prototype bridge.

Roadway width Concrete deck thickness Girder height Cross-sectional area Moment of inertia Young’s modulus Poisson’s ratio

9.75 (m) 0.20 (m) 1.61 (m) 0.02 (m2) 0.0011 (m4) 210 (GPa) 0.25
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In the feedforward neural network, data flow from the nodes in the
input layer to the nodes in the hidden layers, and finally reach the
nodes in the output layer. Each node in the hidden layers is a neuron
which is the primary processing unit of the ANN. Generally, the neurons
in the hidden layers have a summation block and an activation block to
process the corresponding input data and transfer the output to the
connected neurons in the next layer, as shown in Fig. 6. Taking the
neurons in the (l+1)th hidden layer as an example, the tasks per-
formed in the summation block and activation block are briefly out-
lined as follows:

1. Summation block: For the output neurons in the l-th hidden layer,

=
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where l denotes the lth hidden layer; and n denotes the number of
neurons in the lth hidden layer, and its stochastic weights were first
assigned to each of them as follows:

=

⎡

⎣

⎢
⎢
⎢
⎢

⋯
⋯

⋮ ⋮ ⋮
⋯

⎤

⎦

⎥
⎥
⎥
⎥

W

W W W

W W W

W W W

l

l l
n
l

l l
n
l

r
l

r
l

rn
l

( )

11
( )

12
( )

1
( )

21
( )

22
( )

1
( )

1
( )

2
( ) ( )

(7)

where W denotes the stochanistic weight; and r denotes the number of
neurons in the (l+1)th hidden layer.

Then, the sum of all the weighted outputs was calculated to be the
input to the ith neuron in the (l+1)th hidden layer as follows:

∑= ++

=

z W a bi
l

j

n

ij
l

j
l

i
l( 1)

1

( ) ( ) ( )

(8)

where +zi
l( 1) denotes the sum of the weighted inputs to the ith neuron in

the (l+1)th hidden layer; and b denotes the bias to the ith neuron in
the (l+1)th hidden layer.

2. Activation block: before entering the activation block, the bias
terms were attached to neurons and added to the weighted sum.

Then, the activation function was adopted to normalize the
weighted sum, as shown in Eq. (8). In this study, the sigmoid
function,

=
+ −S z

e
( ) 1

1 z (9)

was adopted as the activation function to map the inputs of the neurons
to values between 0 and 1. Adopting a non-linear activation function in
this study allows the neural network to model the complex non-linear
relationship. It is noted that the bias in Eq. (8) was used to shift the
activation function.

In the artificial neural network, each neuron performs similar pro-
cedures shown in Fig. 6 and makes prediction eventually. After each
cycle, the errors between the actual values and the predictions were
calculated. Based on the calculated errors, the Levenberg-Marquardt
optimization algorithm, which is a kind of gradient descent optimiza-
tion methods and also the fastest backpropagation algorithm in the
toolbox, was utilized to adjust the weights of neurons by calculating the
gradient of the loss function. After repeating this procedure for a suf-
ficiently large number of training cycles, the minimum gradient of the
loss function could be reached and the training was then regarded as
completed.

In this study, the mean squared error (MSE), defined as the average
squared difference between the prediction and actual value, was se-
lected as the index to examine the performance of the developed arti-
ficial neural network. The target value of MSE was set to be 0 which
indicates a perfect prediction. During the training of the ANN, the MSE
can be calculated at each epoch and the training stops until the MSE
converges to a small enough value. The whole training procedure of the
ANN is illustrated in Fig. 7.

Based on the generated input variables and the predicted outputs
from the trained ANN, the Monte Carlo method was utilized to calculate
the fatigue failure probability which is the ratio of the number of cases
with g(X) < 0 to the total number of samples investigated.

4. Results

4.1. Part I: Cumulative FD based on the FE analysis

In this part, a total of 150 sets of random input samples were

Table 3
Distributions of the variables investigated.

Par. Description Distribution Mean value Standard deviation Minimum Maximum

FDΔ Critical fatigue damage Truncated lognormal 1.0 0.15 0.5 2.0
rAL Proportion of AL-overloaded trucks Truncated lognormal 0.2 0.15 0 1.0
N Number of truck passage per year Deterministic 2000
t Service time Uniform 1 225
A Fatigue constant Deterministic 3.93x1012 –
m Slope of S-N curve Deterministic 3 –

Fig. 5. Structure of the feedforward neural network.

Fig. 6. Processing procedure of a single neuron.
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generated according to the corresponding distributions shown in Tables
1 and 3. For each set of the input samples, the finite element analysis
was conducted to obtain the bridge responses under overloaded truck
traffic, and the rainflow counting method was then utilized to calculate
the induced cumulative fatigue damage. Assuming the overloaded truck

traffic composed of AL-overloaded trucks only and GW-overloaded
trucks only, the corresponding cumulative fatigue damage is shown in
Fig. 8(a) and (b), respectively. It is evident that, under the same truck
loading, the same time increment leads to nearly the same cumulative
FD increment due to the linear fatigue damage accumulation adopted in

Fig. 7. Training procedure of the ANN.

Fig. 8. Cumulative fatigue damage under overloading (a) AL-overloading; (b) GW-overloading.

Fig. 9. Cumulative fatigue damage under overloading traffic with different
proportions of AL-overload trucks. Fig. 10. Convergence of the MSE.
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this study, as shown in Eq. (2). However, as the vehicle weight in-
creases, the difference between the adjacent cumulative FD with dif-
ferent vehicle weights also increases since the cumulative fatigue da-
mage is proportional to the third power of the stress range (and
therefore the vehicle weight).

The real truck traffic is usually composed of AL- and GW-overloaded
trucks accounting for different proportions which can dramatically vary
from site to site. In Part I, the cumulative FD under the overloaded truck
traffic with typical proportions of AL-overloaded trucks, i.e., 0.1%,
10%, 20%, 40%, 50%, 60%, 80%, 90%, and 99.9%, is illustrated in
Fig. 9. It should be noted that the sum of the proportions of the AL- and
GW-overloaded trucks in the traffic is always equal to 1.0 in this study.
It can be seen from Fig. 9 that the cumulative FD linearly increases as

the proportion of AL-overloaded trucks grows. This phenomenon can be
explained by the results in Fig. 8 that under the loading of truck with
the same gross weight, both the cumulative FD and its increment caused
by GW-overloading are obviously smaller than those caused by AL-
overloading, which can be attributed to the more dispersed axle loads
of five-axle trucks. In this regard, more attention should be paid to the
axle load when determining the overweight limit.

Furthermore, as shown Fig. 9, the cumulative FD caused by over-
loaded truck traffic with different proportions of AL-overload trucks can
be approximated by using the interpolation method, which is valuable
for a quick estimation of the cumulative FD and the determination of
overweight limit considering the vehicle-induced fatigue damage.

4.2. Part II: Train, validation and test of the ANN

In this study, the feedforward neural network was built to map the
relationship between the output, namely, the value of the limit state
function, and the input variables, i.e., the vehicle weight, proportion of
AL-overloaded trucks, service time, and the critical fatigue damage.
During the training procedure of the ANN model, as shown in Fig. 7, the
mean squared error, which was used to measure the performance of the
ANN, approaches to the target value of 0 as the number of epochs ex-
perienced increases. Fig. 10 illustrates the variation of the MSE for the
optimized ANN. It should be noted that since the range of variation of
MSE exceeded five orders of magnitudes during the whole process, a
logarithmic scale for the MSE axle was utilized to capture the complete
variation of MSE.

In order to improve the generality of the ANN model, the k-fold
cross-validation method was adopted to assess the ANN model in this
study. In the k-fold cross-validation method, the training data can be
fully utilized, because all training data are used for both training and
validation, which makes this method preferable for the case with small
data samples.

In this study, the generated 150 sets of sample data were randomly
divided into 10 equal sized subsamples, in other words, the 10-fold
cross-validation method was adopted. For each training process, a
single subsample was used as validation data and the remaining 9
subsamples were used as training data. And the process was repeated 10
times, i.e., each of the 10 subsamples was considered as validation data
once. After the 10-fold cross validation process was completed, the
average of the 10 predicted results was considered as a single estima-
tion and the estimated generalization error can be calculated using Eq.
(10).

∑=
=

CV
k

MSE1
k

i

k

i( )
1 (10)

where CV(k) denotes the estimated generalization error under the k-fold
cross-validation.

To achieve more accurate estimation, the 10-fold cross-validation
was repeated 10 times and 10 generalization errors can be obtained, as
shown in Fig. 11. The average value of the 10 generalization errors was
then taken as the final prediction error. It should be noted that after the
completion of each 10-fold cross-validation, the sample data were
shuffled and split into 10 new equal sized subsamples to avoid dupli-
cation.

In this study, the optimized ANN model was chosen as the one
producing the minimum estimation error. And the corresponding
parameters of the optimized ANN model were all saved. Table 4 shows
the g(X) under several typical conditions based on the FE analysis and
prediction of optimized ANN. It is obvious that the maximum difference
between the predictions and the FE results is only 0.352%, indicating
the high accuracy of the ANN-based predictions.

Fig. 11. Prediction errors of the best ANN.

Table 4
Difference between the ANN-based predictions and the FE results.

FDΔ t (year) W_AL (kN) W_GW (kN) rAL g(X)
based
on
FEA

g(X)
based
on
ANN

Absolute
difference

1.857 80 463.817 370.124 0.453 1.2468 1.2458 0.078%
1.172 15 444.700 499.295 0.294 1.0947 1.0943 0.032%
1.854 60 450.316 389.648 0.384 1.4887 1.4881 0.039%
1.805 45 442.794 485.294 0.102 1.6880 1.6884 0.027%
1.321 75 362.856 479.400 0.086 1.1864 1.1872 0.066%
0.838 30 436.658 477.166 0.660 0.5589 0.5585 0.083%
1.098 10 470.745 383.145 0.369 1.0314 1.0310 0.042%
0.700 50 515.621 448.541 0.011 0.6370 0.6360 0.160%
1.348 65 504.712 434.592 0.964 0.0411 0.0413 0.352%
0.747 15 528.248 530.867 0.366 0.6005 0.6003 0.020%

Fig. 12. Fatigue failure probability of the bridge under overloaded truck traffic.
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4.3. Part III: Prediction of the fatigue failure probability

Based on the optimized neural network, the fatigue failure prob-
ability of the bridge due to overloaded truck traffic was investigated
using the Monte Carlo method. Specifically, a total of 500,000 sets of
input samples were generated stochastically according to the corre-
sponding distributions listed in Tables 1 and 3. Then the corresponding
500,000 outputs were predicted simultaneously based on the optimized
ANN model. Finally, the fatigue failure probability was calculated as
the ratio of the number of negative outputs to the total number of
outputs, i.e., 500,000.

Under the random gross weights of overloaded trucks considered in
this study, several typical proportions of the AL-overloaded trucks, i.e.,
10%, 20%, 30%, 50%, 70%, and 90%, and the service time from the
15th years to 225th years with an interval of 15 years were selected to
illustrate the predicted fatigue failure probability, as shown in Fig. 12.
It is necessary to mention that the target fatigue failure probability is
selected as 2.3% in this study which corresponds to a target reliability
index of 2.0 according to Helmerich et al. [28].

It can be seen from Fig. 12 that the fatigue life of the bridge under
the loading of traffic with 20%, 30%, 50%, 70%, and 90% AL-over-
loaded trucks are 225, 188, 119, 89, and 74 years, respectively, with a
fatigue failure probability of 2.3%. Furthermore, in the first 50 years,
the difference among the fatigue failure probabilities under different
proportions of AL-overloaded trucks is very slight and most of fatigue
failure probabilities are slightly larger than 0. However, after 50 years
of service, the difference becomes apparent. In addition, the higher the
proportion of the AL-overloaded trucks, the higher the deterioration
rate and the higher the fatigue failure probability. This clearly indicates
the significant effect of AL-overloading on the fatigue life of bridges.

For the example used above, the total time spent in preparing the
sample data and training the ANN is approximately 16 h based on a
Core-7 computer, and only a few seconds are required by the optimized
ANN to make predictions under a certain condition. Despite of the time
spent in preparation, the efficiency of the proposed ANN-based prob-
abilistic analysis method is reflected by its response time in damage
evaluation in comparison with the traditional probabilistic fatigue
methods. In specific, the proposed probabilistic machine learning has
several distinct advantages: (1) the preparation of the training data is
an one-time task for a specific bridge; (2) the trained ANN can make an
accurate prediction for various scenarios within a few seconds for a fast
decision-making process, while the traditional FE-based methods have
to perform detailed FE analysis in order to complete a new task every
time; (3) the probabilistic machine learning approach may have the
potential to include the realistic measurement data in posterior fashion
into the trained neural network, which will provide a great accuracy on
the prediction of fatigue failure probability on top of time-response
efficiency.

5. Concluding remarks

In this study, a probabilistic machine learning framework for pre-
dicting the fatigue failure probability of bridges under overloading is
presented based on the ANN neural network and the Monte Carlo
method. A typical composite steel girder bridge was used to illustrate
the proposed framework. This approach is consisted of the following
three steps: (1) collecting data based on finite element analysis; (2)
training of the feedforward neural network; (3) predicting fatigue
failure probability based on the optimized ANN.

Based on the deterministic analysis in this study, the cumulative
fatigue damage under the overloaded truck traffic can be estimated
using interpolation method, which is valuable for the traffic manage-
ment and determination of overweight limit. Moreover, during the
probabilistic analysis, it was found that the fatigue failure probability
for the bridge does not increases linearly with time but increases more
rapidly as service time increases. Therefore, more attention should be

paid to bridges after years of service.
In this study, based on a finite set of training data, the feedforward

neural network was trained to assist in providing an instantaneous as-
sessment of the fatigue failure probability for a certain bridge. In ad-
dition, as a powerful artificial intelligence tool, machine learning can
not only make predictions based on the regression of the existence of
data, but also extrapolate unknown information through interpolation
of the known events in the hyper-dimension event space. Therefore, the
probabilistic machine learning approach may have the potential to in-
clude the realistic measurement data in posterior fashion into the
trained neural network, which will provide a great accuracy on the
prediction of fatigue failure probability on top of time-response effi-
ciency.
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