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Abstract: Residual strength of corroded textile-reinforced concrete (TRC) is evaluated using the 

deep learning-based method, whose feasibility is demonstrated by experiment. Compared to the 

traditional method, the proposed method does not need to know the climatic conditions in which 

the TRC exists. Firstly, the information about the faster region-based convolutional neural networks 

(Faster R-CNN) is described briefly, and then procedures to prepare datasets are introduced. 

Twenty TRC specimens were fabricated and divided into five groups that were treated to five 

different corrosion degrees corresponding to five different residual strengths. Five groups of images 

of microstructure features of these TRC specimens with five different residual strengths were 

obtained with portable digital microscopes in various circumstances. With the obtained images, 

datasets required to train, validate, and test the Faster R-CNN were prepared. To enhance the 

precision of residual strength evaluation, parameter analysis was conducted for the adopted model. 

Under the best combination of considered parameters, the mean average precision for the residual 

strength evaluation of the five groups of the TRC is 98.98%. The feasibility of the trained model was 

finally verified with new images and the procedures to apply the presented method were 

summarized. The paper provides new insight into evaluating the residual strength of structural 

materials, which would be helpful for safety evaluation of engineering structures. 

Keywords: textile-reinforced concrete; deep learning method; faster R-CNN; residual strength 

evaluation; corrosion degree; microstructure features 

 

1. Introduction 

Textile-reinforced concrete (TRC), which is a new type of composite cement-based material, has 

received great attention due to its high tensile strength and excellent performance in alkali resistance. 

Many studies have been carried out for investigating the basic mechanical properties of the TRC. 

Some scholars investigated the effects of such parameters as the loading rate, temperature, and the 

arrangement of textile layers on the bending behavior of members made of the TRC through three-

point or four-point bending experiments [1–4]. Some investigated the effects of some parameters, 

including the prestress levels, steel fiber properties, and freezing-thawing cycles, on the tensile 

performance of members made of the TRC [5,6]. Kong et al. [7] compared the tensile and flexural 

behavior of the TRC and found that the ultimate tensile strength of TRC obtained with bending 

experiments is higher than that obtained with tensile experiments. Additionally, some numerical 

models were developed for predicting the bending and tensile behaviors of TRC sandwich beams 
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and verified with experiments [8–10]. All these studies put emphasis on determining the ultimate 

tensile strength of newly fabricated TRC components. In fact, accurately evaluating the residual 

strength of the TRC components is of great importance for their safety assessment. To the best of the 

authors’ knowledge, there is little literature emphasizing the evaluation of the residual strength of 

the TRC. Orlowsky and Raupach [11] reviewed a few previous studies on strength loss models of the 

TRC and then proposed a new numerical model to predict the residual strength of the TRC. However, 

using these models to predict the residual strength of the TRC one needs to know all the climatic 

information, including temperature and humidity, which is difficult to obtain in practice. 

In recent decades, deep learning models have been developed rapidly and can learn unique 

features of objects from a great deal of labelled data [12]. Some scholars summarized how some 

common deep learning models work and analyzed their advantages and disadvantages [13,14]. The 

deep learning method has also been used in plenty of aspects of civil engineering. The most common 

application focuses on crack detection, including identifying crack class, location, width, and length 

[15,16]. Using deep learning methods to detect common damage types of civil structures is also a hot 

topic [17,18]. Moreover, some researchers proposed deep convolutional neural network (CNN)-based 

methods to evaluate the fatigue performance of steel members [19], while some developed a deep 

learning-based framework to uncover those unknown relationships between structural damage and 

structural responses [20]. Furthermore, a few researchers conducted a design optimization for a truss 

structure using the deep learning-based method and found its superiority to traditional neural 

networks [21]. Additionally, a machine vision-based intelligence system was developed by Dick et 

al. to identify and predict the threats that may result in structural failures [22]. Recently, Hadi and 

Rigoberto [23] and Ge et al. [24] reviewed the application of deep learning method in structural 

engineering and material science, respectively. Based on deep learning analysis, Li et al. [25] 

predicted the modulus of heterogeneous materials and Bastidas-Rodriguez et al. [26] addressed the 

fracture classification problem of metallic materials. Though the deep learning-based approaches 

have been applied in many aspects of material science and engineering, up to now no such 

approaches have been reported to be used to evaluate the residual strength of the TRC in the 

literature, and the present study offers a first attempt to evaluate the residual strength of materials 

from a deep learning perspective. 

The object of the paper is to evaluate residual strength of the TRC based on a deep learning 

framework. The paper is divided into six parts. In Section 2, details of the adopted deep learning-

based approach, namely, the faster region-based CNN (Faster R-CNN) is introduced. In Section 3, 

procedures to prepare datasets and to implement the Faster R-CNN are described; indices used to 

evaluate the performance of trained models are introduced as well. In Section 4, three key parameters 

that may affect the evaluation accuracy are investigated, based on which an optimal combination of 

these parameters was obtained to train the Faster R-CNN. The feasibility of the trained model was 

checked with new images. In Section 5, strategies for enhancing the accuracy of the presented method 

are discussed and procedures to apply such an approach are summarized. Finally, some remarkable 

conclusions are made from the study and some future research directions are pointed out. 

2. Methodology 

The Faster R-CNN, which was developed on the basis of the region proposal network (RPN) 

and fast region-based CNN (Fast R-CNN) both of which utilize the CNN for feature extraction, was 

adopted to evaluate the residual strength of the TRC in the present study. The Faster R-CNN 

architecture is illustrated in Figure 1. The RPN plays a role to generate object proposals from input 

images, while the role of the Fast R-CNN is to determine the location of these object proposals 

generated by the RPN and evaluate the residual strength. 
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Figure 1. Architecture of the Faster R-CNN. 

2.1. The CNNs 

Generally, a CNN consists of several convolutional (CONV) layers, max pooling (MP) layers, 

fully-connected (FC) layers, and soft-max (SM) layers. The CONV layers play a role for feature 

extraction from input images through a group of kernels composed of learnable weights. The depth 

of kernels is the same as that of the input layer, but the width and height of the former are smaller 

than that of the latter. Each kernel is set to slide on the input with a specified stride length and at each 

location of the kernel, as demonstrated in Figure 2, the dot product is carried out between the kernel 

and its respective field on the input. The stride length has a significant effect on the computation 

efficiency and the output size. Smaller stride length results in lower computation efficiency and larger 

output size, and helps to reduce feature loss. The values of the dot product, namely, the element-by-

element multiplication between each kernel element and the corresponding element in the respective 

field, are added up plus a bias as the outcome of each kernel. All the outcomes of each kernel sliding 

to different locations of the input are arranged as the output of CONV layers. The output size of the 

CONV layer is affected by the input size, the kernel size as well as the stride length, and may be 

smaller than the input size. As feature loss may occur due to the size reduction of the output layer, 

zero padding the input, as shown in Figure 2, is an efficient way to keep the output size. 

 

Figure 2. Demonstration of the convolutional layer. 

An MP layer plays a role for size reduction of its input through the operation of downsampling 

which can save the computation time and reduce the probability of overfitting. Additionally, the MP 
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layer performs an operation of extracting the maximum value from the window that slides on the 

input, as demonstrated in Figure 3. 

 

Figure 3. Demonstration of the max-pooling layer. 

An FC layer plays a role for the connection of all neurons from its previous layer, whose role is 

different from that of a CONV layer that connects neurons of a local region. In fact, the FC layer is a 

vector consisting of neurons obtained through the operation of the dot product with a bias for each 

neuron of its inputs. 

A SM layer plays a role for the prediction of the category of its input according to the 

probabilities of the input being each category. The probabilities are computed with an SM function 

using the features provided by the FC layer. The input is categorized to be the category with the 

highest probability. 

2.2. The Region Proposal Network 

The RPN, whose overall architecture is demonstrated in Figure 4, plays a role to efficiently 

generate high-quality region proposals, through sharing CONV layers with the object detection 

network of the Fast R-CNN adopted in the present study. As can be seen in Figure 4, when an image 

is fed into the RPN, the output are a number of region proposals that are generated through sliding 

a mini-size network on the feature map (of the input image) obtained from the last CNN layer. The 

mini-size network, in fact, is a 3 × 3 spatial window of the feature map in the present study, as 

suggested by Ren et al. [27]. At the location of each sliding-window nine region proposals with 

different sizes are produced, which are actually nine rectangular boxes called anchors. These anchors 

are located at the center of the sliding-window and can be determined with eight parameters (i.e., the 

sliding-window center (xa, ya), three widths and three heights: (��
�, ℎ�

�), where m, n = 1–3). A concept 

of Intersection-over-Union (IoU) was proposed to estimate the matching degree between an anchor 

and a ground-true box (GTB). The IoU of an anchor and a ground-true box (GTB) is calculated to be 

the ratio of the area of their intersection to the area of their union. An anchor is labelled as positive if 

it achieves the highest IoU with a GTB, or if its IoU with every GTB is larger than 0.7. A non-positive 

anchor is labelled as negative if its IoU with any GTB is smaller than 0.3. Anchors that are not labelled 

are abandoned in the process of training. 
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Figure 4. Overall architecture of the original RPN. 

For each sliding window, a feature vector is obtained based on the activation function, such as 

the rectified linear unit (ReLU) function, which is commonly adopted as it not only provides 

nonlinearity but also enhances the convergence rate. The obtained feature vector is then taken as the 

input of two correlated functional layers. One functional layer is the box-classification layer, which 

computes the probability of being an object or just being part of the background in each anchor 

according to the feature vector and initial weights. The computed probability updates and varies 

between zero and one during the training process, and eventually gets close to one for a positive 

anchor and zero for a negative anchor. The other functional layer is the box-regression layer, which 

computes and updates the parameters that determine the location and size of the predicted bounding 

box (PBB) associated with an anchor during the process of training to better match a GTB [28]. 

Training the RPN end-to-end is, as a matter of fact, a process to minimize the loss function shown 

in Equation (1) using 128 positive and 128 negative anchors selected randomly from an image. The 

techniques of backpropagation and stochastic gradient descent (SGD) min-batch are employed in the 

training process: 
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1
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In Equation (1), Lcls and Lreg are the classification loss function and the regression loss function, 

respectively; i represents the numerical order of an anchor in the min-batch, and p
i

*

 
represents the 

ground-truth label, which adopts a value of 1 or 0 for positive or negative anchors, respectively; pi 

represents the predicted probability of an object in the ith anchor. To normalize the two loss functions, 

the values of Ncls and Nreg, as suggested by Ren et al. [27], were adopted to be the mini-batch size 

(MBS) and ten percent of the number of anchors, respectively. The ti,j (j = x, y, w, h) is a vector that 

describes geometrical differences between the PBB and the anchor, and the t
i, j

*  is a vector that 

describes geometrical differences between the GTB and the anchor. The ti,j and 
*
,i jt  can be obtained 

with the following matrix: 
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where (xi, yi, wi, hi) determines the center location and sizes (width and height) of the PBB associated 

with the ith anchor; Similarly, the team (xi,a, yi,a, wi,a, hi,a) determines the center location and sizes of the 

ith anchor, and (x*, y*, w*, h*) determines the center location and sizes of the GTB. It should be noted 

that the four parameters determining the PBB are continuously renewed to approach those of the 
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GTB in the process of training. The position relations among the PBB, the anchor, and the GTB are 

demonstrated in Figure 5. 

 

Figure 5. Illustration of position relations among the PBB, the anchor and the GTB. 

In Equation (1), the log loss function, Lcls = −logpu, was selected as the classification loss function 

and the Equation (3) shown below was used as the regression loss function: 

����(��, ��) = �
0.5(��  ��|�� − ��| < 1
|�� − ��| − 0.5   ��ℎ������

 (3) 

where y1 and y2 are variables for illustration. For more detailed information on the training process 

of the RPN can be found in [27]. 

2.3. Fast R-CNN 

The Fast R-CNN plays a role for localizing and classifying objects in images and its overall 

architecture is demonstrated in Figure 6. As shown in Figure 6, the Fast R-CNN also makes use of the 

CNNs to acquire the feature map of the input image and adopts the object proposals provided by the 

RPN. Features on the feature map, associated with an object proposal, are usually called a region of 

interest (RoI). For each RoI, a fixed-size feature vector is acquired through the max pooling operation 

conducted in the RoI pooling layer (Figure 6). The acquired feature vector is then fed into several FC 

layers followed by two functional layers. One functional layer is the softmax layer that computes and 

displays the probability of a RoI being each of g + 1 classes (g training categories +1 background 

category), and the other functional layer is the regression layer that computes and displays the four 

parameters that determine the center location (T
x

u ,T
y

u), height (T
h

u ), and width (T
w

u ) of object bounding 

boxes. The IoU of the RoI and the GTB is also used to estimate their matching degree. For each RoI, 

it is labelled as positive (u = 1) when its IoU with a GTB is greater than 0.5, and it is labelled as negative 

(u = 0) when the maximum value of its IoU with all the GTB is in the range of [0.1,0.5) [27]. 

 

Figure 6. Overall architecture of the original Fast R-CNN. 
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Training the Fast R-CNN end-to-end is, in fact, a process to minimize the multi-class loss 

function given in Equation (4) for each labelled RoI, in which the techniques of backpropagation and 

the SGD min-batch are employed: 

�(�, �, ��, �) = ����(�, �) + �[� ≥ 1] � ����(��
�

�∈{�,�,�,�}

, ��) (4) 

In Equation (4), Lcls = −logpu stands for the log loss function, and Lreg stands for the regression loss 

function as given in Equation (3); u is the label of the GTB, and v is a vector that determines the 

location coordinates and sizes (height and width) of the GTB. The Iverson bracket [u ≥ 1] adopts a 

value of 1 when u ≥ 1 and 0 otherwise. To keep balance between the two loss functions, the hyper-

parameter λ adopted a value of 1 [27]. During each iteration, two images and 128 RoIs (consisting of 

mini-batches) acquired from the two images are picked at random to train the Fast R-CNN. From the 

study of Girshick et al. [28], readers can find more detailed information on the training process of the 

Fast R-CNN. 

2.4. Architecture of the CNNs Based on VGG16-Net 

To enhance computing efficiency, the RPN and Fast R-CNN are intentionally designed to use 

the same architecture as the CNN. Currently, many famous architectures have been developed for 

the CNN, including the Microsoft ResNet-152, GoogleNet, ZF-Net, and VGG16-net [18]. As the 

VGG16-net can make a good balance between the computing efficiency and detecting accuracy, 

therefore, it was chosen for the CNN architecture in the present study. The VGG16-net is usually 

constituted by thirteen weighted CONV layers, five MP layers, three weighted FC layers, and a SM 

layer. All CONV layers make use of nonlinear activation functions (i.e., the ReLU) to enhance the 

convergence rate, and take advantage of the technique of zero-padding to maintain their spatial sizes. 

All MP layers, also using zero-padding to maintain size, conduct a spatial pooling operation by 

sliding 2 × 2 filters two pixels per stride. Following the CONV and MP layers are three FC layers and 

a SM layer which is adopted to classify objects in images. 

To present a Faster R-CNN-based framework to evaluate the residual strength of the TRC, 

modification was made to the initial overall architecture of VGG16-net to better match the RPN and 

Fast R-CNN. With regard to the modified RPN demonstrated in Figure 7, the final MP layer and the 

three FC layers of the primary VGG16-net was substituted with a sliding CONV after which there is 

an FC layer with 512 dimensions in depth, and the SM layer of the primary VGG16-net was 

substituted with the SM and regression layers. The detailed information about the VGG16-net-based 

RPN is summarized in Table 1. 

 

Figure 7. Overall architecture of the modified RPN based on VGG-16. 
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Table 1. Detailed information about the VGG16-net-based RPN. 

Layer Type 
Filter 

Size 
Stride Depth Layer Type 

Filter 

Size 
Stride Depth 

1 CONV + ReLU 3 × 3 1 64 11 CONV + ReLU 3 × 3 1 512 

2 CONV + ReLU  3 × 3 1 64 12 CONV + ReLU 3 × 3 1 512 

3 Max pooling 2 × 2 2 64 13 CONV + ReLU 3 × 3 1 512 

4 CONV + ReLU 3 × 3 1 128 14 Max pooling 2 × 2  2 512 

5 CONV + ReLU  3 × 3 1 128 15 CONV + ReLU 3 × 3 1 512 

6 Max pooling 2 × 2 2 128 16 CONV + ReLU 3 × 3 1 512 

7 CONV + ReLU 3 × 3 1 256 17 CONV + ReLU 3 × 3 1 512 

8 CONV + ReLU  3 × 3 1 256 18 
Sliding CONV + 

ReLU 
－ － 512 

9 CONV + ReLU  3 × 3 1 256 19 FC － － 512 

10 Max pooling  2 × 2 2 256 20 
Softmax and 

Regressor 
－ －  － 

With regard to the modified Fast R-CNN demonstrated in Figure 8, the final MP layer of the 

primary VGG16-net was substituted with a RoI pooling layer. For the purpose of preventing 

overfitting during the process of training, between each of the three FC layers of the primary VGG16-

net were inserted with dropout layers whose threshold value was set to be 0.5. To match the number 

of classifications considered in the present study, the depth of the final FC layer was, thus, altered 

correspondingly to six for five residual strengths and background. The final SM layer was substituted 

with the SM and regression layers. Table 2 summarizes the detailed information about the VGG16-

net-based Fast R-CNN. 

 

Figure 8. Overall architecture of the modified Fast R-CNN based on VGG-16. 

Table 2. Detailed information about the VGG16-net-based Fast R-CNN. 

Layer Type 
Filter 

Size 
Stride Depth Layer Type 

Filter 

Size 
Stride Depth 

1 CONV + ReLU  3 × 3 1 64 13 CONV + ReLU 3 × 3 1 512 

2 CONV + ReLU  3 × 3 1 64 14 Max pooling 2 × 2  2 512 

3 Max pooling 2 × 2 2 64 15 CONV + ReLU 3 × 3 1 512 

4 CONV + ReLU 3 × 3 1 128 16 CONV + ReLU 3 × 3 1 512 

5 CONV + ReLU  3 × 3 1 128 17 CONV + ReLU 3 × 3 1 512 

6 Max pooling 2 × 2 2 128 18 RoI pooling － －  512 

7 CONV + ReLU 3 × 3 1 256 19 FC + ReLU － － 4096 

8 CONV + ReLU  3 × 3 1 256 20 Dropout － － － 

9 CONV + ReLU  3 × 3 1 256 21 FC + ReLU － － 4096 

10 Max pooling  2 × 2 2 256 22 Dropout － － － 

11 CONV + ReLU 3 × 3 1 512 23 FC + ReLU － － 7 

12 CONV + ReLU 3 × 3 1 512 24 
Softmax and 

Regressor 
－ － － 
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2.5. Faster R-CNN Composed of the RPN and Fast R-CNN 

To improve computing speed efficiently, the Faster R-CNN were designed intentionally to 

combine the RPN and Fast R-CNN that share the same CNNs for image feature extraction, as 

demonstrated in Figure 9. Training the Faster R-CNN is actually a four-step alternating process. Step 

1 is to train the RPN following the procedures discussed in Section 2.2, in which the object proposals 

to be used for training the Fast R-CNN are prepared. The second step is to train the Fast R-CNN, 

following these procedures discussed in Section 2.3, with the object proposals prepared in step 2. The 

third step is to initialize the RPN with the final weights obtained from previous step, and to fine-tune 

these layers exclusive to the RPN with the shared CONV layers fixed. The final step is to fine-tune 

these layers exclusive to the Fast R-CNN utilizing the object proposals obtained in step 3 with the 

shared CONV layers fixed. As hundreds to thousands of object proposals are generated from an 

image through the RPN, which will lower the computing efficiency and estimating accuracy, these 

object proposals are sorted based on the scores obtained from the box-classification layer, and the 

first 2000 object proposals are utilized for the training of the Fast R-CNN in step two. Additionally, 

it has been proved that training the Faster R-CNN with the first 300 object proposals obtained from 

the final step can make a good balance between detecting accuracy and detecting speed. 

 

Figure 9. Overall architecture of the Faster R-CNN. 

3. Dataset Preparation and Implementation Details 

3.1. Dataset Preparation 

To estimate the residual strength of the TRC based on deep learning approaches, datasets need 

to be prepared beforehand to train, validate, and test the Faster R-CNN model. As demonstrated in 

Figure 10, datasets were generated following a three-step procedure in the present study. 
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Figure 10. Procedures to generate datasets. 

In the first step, specimens of the TRC were prepared. Twenty TRC specimens were fabricated 

and cured under standard conditions in Shunxing Concrete Co. LTD in Hunan Province of China. 

These TRC specimens were evenly divided into five groups. One group was exposed to normal 

conditions while other four groups were treated to four different corrosion degrees by immersing 

them into the tank made by Cangzhou Xingye Test Instrument Co. LTD in Hebei Province of China, 

which contained water at 80 degrees, for different days, as demonstrated on the left of Figure 10. The 

immersed time for the five groups of specimens was 0, 6, 12, 18, and 24 days, respectively, and the 

corresponding corrosion degrees were 0, 0.43, 0.48, 0.52, and 0.56, respectively, which corresponded 

to five different residual strengths of 1, 0.57, 0.52, 0.48, and 0.44, respectively, that were denoted with 

P-0, P-6, P-12, P-18, and P-24, respectively [29]. It should be noted that in the present study residual 

strengths were obtained from three-point bending test and the value of residual strength under each 

corrosion degree is the average residual strength of the four specimens under consideration. 

In the second step, images of the TRC specimens were captured under different corrosion 

degrees. At each corrosion degree, two-megapixel portable digital microscopes with a brand of  

Smolia made in Fukuoka, Japan (1920 × 1080) were used to capture the microstructure features of the 

TRC specimens, as demonstrated in the middle of Figure 10. As the field of view of the portable 

digital microscope is only 2.3 × 1.3 mm, the resolution of the captured images reaches approximately 

21,000 dots per inch (dpi). To enhance the robustness of the estimation, different portable digital 

microscopes with the same specification were adopted, based on which images were captured under 

different light conditions by different photographers. Under each corrosion degree, 550 initial images 

were taken from all specimens, with 500 images used to train the model and 50 reserved for 

robustness verification of the trained model. After augmenting the dataset via the operation of mirror 

(including horizontal and vertical) and 180-degree rotation, the number of images used for model 

training and robustness verification increased to 10,000 (that is, 500 × 5 × 4) and 1000 images (that is, 

50 × 5 × 4), respectively. 

In the final step, datasets were established utilizing images obtained in step 2. As the Faster R-

CNN is a supervised model, images need to be labelled first and then used for training the model. 

The 10,000 images (2000 for each residual strength) obtained for model training in step two were 

labelled with the days that they were immersed in the water, as demonstrated on the right of Figure 

10. For instance, if a specimen was immersed into the water for six days, its corresponding image was 

labeled to be P-6. Among the 10,000 labelled images, the proportion of images utilized for creating 

training, validating, and testing datasets were 40%, 40%, and 20%, respectively. 
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3.2. Implementation Details 

Based on the open-source Faster R-CNN model, all experiments were implemented on a service 

station with the Caffe framework under the graphics processing unit (GPU) mode. The hardware 

configuration of the service station is as follows: central processing unit (CPU): Intel i7-8700k (3.20 

GHz), GPU: 11 GB memory, 16 GB DDR4 memory, and a ZOTAC X-GMING GeForce RTX 2080Ti. 

For Faster R-CNN, the sizes of all images adopted for training and validating the RPN and Fast R-

CNN are resized to make the maximum value of their long and short sides smaller than 1000 and 600 

pixels, respectively. The original parameters for the CNN layers and FC layers are obtained from two 

zero-mean Gaussian distributions whose standard deviations are 0.001 and 0.01, respectively. The 

values of the MBS, learning rate (LR), momentum, and weight decay adopted to train the RPN and 

Fast R-CNN are 128, 0.001, 0.9, and 0.0005, respectively. The scales of nine anchors are obtained by 

combining three different scales {1282, 2562, 5122} and three different aspect ratios {1:1, 1:2, 2:1}. Since 

cross-boundary anchors could inevitably lead to a non-convergence problem, anchors whose 

boundaries cross images were abandoned in the process of training. Additionally, the value of non-

maximum suppression was given a value of 0.7 for the reduction of overlap between object proposals. 

A more detailed description about parameter initialization of the Faster R-CNN can be found in [27]. 

Average precision (AP), which is calculated on the basis of the precision-recall curve of each 

class, is used for estimating the performance of the trained Faster R-CNN model [30]. For each class, 

the definition of precision is the proportion of correct detections to all the detections returned by the 

algorithm, and the definition of recall is the proportion of correct detections to all the considered 

ground-truth instances. The terminology mean AP (mAP), as the term suggests, is the mean of all 

calculated APs. From the study of Girshick [30], readers can find more details about the precision-

recall curve and the AP. 

4. Experiments 

4.1. Training, Validating, and Testing Results 

The Faster R-CNN model was first trained through the previously discussed four-step training 

strategy using original parameters and was tested using the testing dataset. With the service station 

introduced in Section 3.2, the time required for training the model for 280,000 iterations and 

evaluating an image with a resolution of 1920 × 1080-pixel is around 14.0 h and 0.072 s, respectively. 

Figure 11 shows the change of training loss against the number of iterations. As can be observed from 

Figure 11, the training loss declines as the number of iterations increases and gradually becomes 

stable after 230,000 iterations. Figure 12 shows the precision-recall curve of each case under 

consideration for the testing dataset based on the model trained for 230,000 iterations. With the 

obtained precision-recall curve, the APs and mAP can be computed, as also shown in Figure 12. It 

can be observed from Figure 12 that the APs for residual strength evaluation of P-0, P-6, P-12, P-18, 

and P-24 are 99.51%, 99.75%, 98.50%, 90.43%, and 90.75%, respectively, and the relevant mAP is 

95.79%. Likewise, based on the models trained for different iterations, the APs and mAPs were 

obtained and plotted against the number of iterations, as shown in Figure 13. Expectedly, as the 

number of iterations increases, the APs and mAPs both increase at first and then tend to be stable 

after 230,000 iterations. 
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Figure 11. Change of training loss against the number of iterations. 

 

Figure 12. Precision-recall curve of each case under consideration for the testing dataset based on the 

model trained for 230,000 iterations. 
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Figure 13. Variation of APs and mAPs against the number of iterations. 

4.2. Parameter Optimization 

As the original parameters adopted for Faster R-CNN in the study of Ren et al. [27] might not 

be the best combination for the dataset under consideration, in the present study parameters for 

Faster R-CNN were optimized for achieving better accuracy of residual strength evaluation. As 

indicated by Ren et al. [27] that the performance of Faster R-CNN is significantly affected by three 

key parameters, namely, the anchor scale (AS), the MBS, and LR. Therefore, the influences of these 

parameters on the accuracy of residual strength evaluation were investigated. With three sets of ASs, 

five MBSs, and three LRs considered, the number of combinations of the three parameters was 45. 

The APs and mAPs calculated from the testing dataset under the 45 combinations were summarized, 

as illustrated in Figure 14 and Table 3. It should be noted that the three sizes of anchors under 

consideration were determined based on the size of the images (600 × 1000 pixels) to be detected. It 

should be pointed out that in the study of Ren et al. an RoI was labelled as the computed category if 

a probability of less than 0.6 was computed from the SM layer for the RoI [27]. It should also be noted 

that the number of iterations adopted was to be 230,000 for each model training. 

 

Figure 14. APs and mAPs under different combinations of the AS, MBS, and LR. 
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Table 3. Parameters considered and corresponding results for test dataset. 

Cases 
Anchor Scales 

Aspect Ratio 

Mini-

Batch 

Sizes 

Learning 

Rate 

AP (%) 

mAP (%) 
P-0 P-6 P-12 P-18 P-24 

1 

{642,1282,2562} 

{1:1,1:2,2:1} 

16 

0.0001 99.70  99.93  98.76  90.61  97.59  97.32  

2 0.0005 98.02  98.53  90.89  90.48  90.37  93.66  

3 0.001 90.70  90.86  90.89  90.84  90.12  90.68  

4 

32 

0.0001 99.81  99.43  98.48  90.64  98.09  97.29  

5 0.0005 90.83  99.57  90.91  90.75  90.10  92.43  

6 0.001 90.81  98.67  90.86  90.65  89.46  92.09  

7 

64 

0.0001 98.95  97.23  97.20  96.63  96.78  97.36  

8 0.0005 98.98  99.21  98.32  90.68  90.29  95.50  

9 0.001 98.63  99.27  90.89  90.21  90.58  93.92  

10 

128 

0.0001 97.54  94.66  95.07  92.80  88.48  93.71  

11 0.0005 98.68  98.55  97.47  96.10  96.88  97.54  

12 0.001 99.20  96.97  98.99  90.23  90.68  95.21  

13 

256 

0.0001 96.62  95.58  94.12  92.66  92.75  94.35  

14 0.0005 96.97 94.46 95.09 89.43 94.36 94.06 

15 0.001 98.63  99.27  90.89  90.21  90.58  93.92  

16 

{1282,2562,5122} 

{1:1,1:2,2:1} 

16 

0.0001 99.48  99.93  98.31  90.80  98.50  97.40  

17 0.0005 98.79  99.60  99.00  90.91  90.49  95.76  

18 0.001 90.91  98.93  90.91  90.69  90.65  92.36  

19 

32 

0.0001 99.26  99.77  99.16  90.85  98.04  97.42  

20 0.0005 99.60  99.80  98.72  90.88  90.46  95.89  

21 0.001 90.88  98.73  90.91  90.73  90.51  92.35  

22 

64 

0.0001 99.63  99.75  98.58  90.69  98.38  97.41  

23 0.0005 99.20  99.66  99.05  97.92  99.08  98.98  

24 0.001 98.89  99.08  97.53  90.71  90.20  95.28  

25 

128 

0.0001 99.30  97.96  96.66  96.36  96.53  97.36  

26 0.0005 99.77  99.93  98.72  97.86  97.53  98.76  

27 0.001 99.51  99.75  98.50  90.43  90.75  95.79  

28 

256 

0.0001 97.36  90.53  96.02  93.68  93.86  94.29  

29 0.0005 99.48  98.44  98.95  97.57  97.41  98.37  

30 0.001 99.70  98.70  99.10  90.70  96.90  97.00  

31 

{2562,5122,10242} 

{1:1,1:2,2:1} 

16 

0.0001 99.90  99.68  98.95  97.01  97.22  98.55 

32 0.0005 98.67  98.61  99.12  90.67  90.41  95.49 

33 0.001 90.81  90.86  90.72  90.69  90.55  90.73 

34 

32 

0.0001 99.93  99.82  99.45  97.79  97.66  98.93 

35 0.0005 99.30  99.21  98.58  90.88  90.59  95.71 

36 0.001 98.75  99.30  90.77  90.88  89.95  93.93 

37 

64 

0.0001 99.47  99.47  99.45  97.28  98.88  98.91 

38 0.0005 99.90  99.80  98.43  90.66  98.80  97.52 

39 0.001 90.89  99.40  98.64  90.77  98.46  95.63 

40 

128 

0.0001 99.34  90.88  96.32  96.04  96.80  95.87 

41 0.0005 99.71  99.44  99.42  90.77  97.95  97.46 

42 0.001 99.67  99.78  99.22  90.76  98.16  97.52 

43 

256 

0.0001 97.54  90.59  96.24  89.74  93.88  93.6 

44 0.0005 99.71  99.88  99.18  90.81  98.59  97.63 

45 0.001 90.91  99.47  99.16  90.32  90.48  94.07 

As can be observed from Figure 14 and Table 3, the AS, MBS, and LR affects the APs and mAPs 

in a coupled way. The largest APs for residual strength evaluation of P-0, P-6, P-12, P-18, and P-24 

are 99.93% for Case 34, 99.30% for Case 1, 99.45% for Case 34, 97.92% for Case 23, and 99.08% for Case 

23, respectively. To make a better balance among APs for different cases, Case 23 was selected, in 

which the mAP reaches the largest value of 98.98%, and the corresponding APs for residual strength 
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evaluation of P-0, P-6, P-12, P-18, and P-24 are 99.20%, 99.66%, 99.05%, 97.92%, and 99.08%, 

respectively. The ASs in Case 23 are 1282, 2562, and 5122, and the anchor ratios are 1:1, 1:2, and 2:1. 

The MBS and LR in Case 23 are 64 and 0.0005, respectively. 

4.3. Testing New Images 

To examine the feasibility of the presented method, the model obtained in Case 23 was used for 

evaluating the residual strength of the 1000 images (200 for each residual strength) that were reserved 

in Section 3.1. The evaluation results for the five cases under consideration are summarized in Table 

4, from which it can be seen that the APs for residual strength evaluation of P-0, P-6, P-12, P-18, and 

P-24 are 99.5%, 99.5%, 100%, 100%, and 100%, respectively, and the corresponding mAP is 99.8%. The 

results demonstrate that the trained model also has an excellent performance for residual strength 

evaluation of new images, demonstrating the feasibility of the presented method. Figure 15 illustrates 

some of the evaluation results for each case under consideration, in which the images that were 

wrongly evaluated for residual strength of P-0 and P-6 were given specifically in Figure 15a,b. It 

should be pointed out that the 1000 reserved new images were captured in various circumstances as 

discussed in Section 3.1, which means that the effects of these circumstances on the accurate rate of 

residual strength evaluation is insignificant. It should also be pointed out that during the testing 

process for each new image, the well-trained model will output a predicted value of residual strength 

represented by the image. if the predicted value matches the actual residual strength that was obtain 

from experiment, the evaluation is assumed to be correct and vice versa. The average precision 

presented in Table 4 was calculated to be the ratio of the number of correct evaluations to the total 

evaluations. 

Table 4. Evaluation results for new images. 

Item Number of New Images to Be Evaluated 
Number of 

Incorrect Evaluations 
AP (%) mAP (%) 

P-0 200 1  99.5   

  

 99.8 

  

  

P-6 200 1  99.5 

P-12 200 0  0 

P-18 200 0  0 

P-24 200 0  0 
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Figure 15. Illustration of some of the evaluation results for each case under consideration: (a) P-0; (b) 

P-6; (c) P-12; (d) P-18; (e) P-24. 

5. Discussion 

The results illustrated in Section 4 have demonstrated that the proposed Faster R-CNN-based 

approach is capable of learning and detecting microstructure feature differences of the TRC with 

different residual strengths. In reality, the actual residual strength required to be estimated is usually 

different from one of those adopted for training the model. Therefore, the actual residual strength is 

most likely to be evaluated to be the training residual strength which is closest to the actual residual 

strength. To reduce the evaluation error, one effective approach is to use more specimens for training 

the model, which contributes to shortening the gap between the actual residual strength and the 

closest training residual strength. Additionally, the surface of the TRC component required for 

residual strength evaluation needs to be cleaned to take images for good quality. It should be pointed 

out that different types of materials own different microstructure features, therefore, new models are 

required to train for different types of materials. The procedures for implementing the proposed deep 

learning-based framework for residual strength evaluation of a material are summarized below: 

1. Prepare sufficient samples under differing corrosion degrees and guarantee that the samples 

could contain the scope of residual strengths required to be evaluated and thus enhance the 

evaluation precision. 

2. Acquire high-quality images of prepared samples and label acquired images. 

3. Select a proper deep learning-based framework and train it using these images acquired in step 

2; check the soundness of the trained model with new images not adopted for training. 

4. Acquire the images of components that need to be evaluated and utilize the trained model to 

estimate the residual strength. 

It should be pointed out that enhancing image quality and augmenting the dataset of images 

adopted for training and validating the model are efficient ways to improve the model performance. 

6. Conclusions 

Previous models to predict the residual strength of textile-reinforced concrete need to know the 

climatic conditions (temperature and humidity) in which the TRC exists, which is difficult in practice. 

A deep learning-based framework based on the Faster R-CNN is presented to evaluate the residual 

strength of the TRC under different corrosion degrees, without the need to know the climatic 

conditions. Five groups of TRC specimens were fabricated and treated to five different corrosion 

degrees corresponding to five different residual strengths by immersing them into the water tank for 

different days (namely, from 0 to 24 days with an interval of six days, denoted with P-0, P-6, P-12, P-

18, and P-24, respectively). Images of microstructure features of these specimens with five different 

residual strengths were taken in various circumstances with portable digital microscopes. The 

resolution of the obtained images reaches approximately 21,000 dots per inch (dpi). Among the 11,000 

images adopted in the study, the proportion of 10,000 images utilized for creating the training, 

validating, and testing datasets were 40%, 40%, and 20%, respectively, and the other 1000 new images 

(200 for each strength) were reserved to check the feasibility of the trained models. 
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The influences of three key parameters, namely, the anchor scale, mini-batch size, and learning 

rate, on the precision of residual strength evaluation were investigated, based on which a best 

combination of the three parameters was acquired to train the Faster R-CNN. The maximum APs for 

residual strength evaluation of P-0, P-6, P-12, P-18, and P-24, obtained under the best combination of 

these parameters, are 99.20%, 99.66%, 99.05%, 97.92%, and 99.08%, respectively, and the mAP is 

98.98%. It should be noted that the maximum APs were obtained by make comparisons with the 

results obtained from experiments. 

The paper provides a new way to evaluate residual strength of materials. However, it should be 

pointed out that under the same corrosion degree the microstructure features of different materials 

differ from each other. This indicates that specific models are required for different materials. In the 

future, efforts will be focused on other types of materials which are widely utilized in industry to 

further check the feasibility of the presented approach. It should also be noted that the presented 

method is actually a way to build the relationship between the microstructure features and micro 

properties of a material, which can be applied in many fields. 
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