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A B S T R A C T

A fatigue reliability model based on the peridynamic (PD) theory was proposed to analyze the
fatigue performance of steel bridges in this study. Different from previous methods based on
classical continuum mechanics, the PD model does not require additional criteria to guide the
growth of crack or damage. In particular, the influence of fatigue threshold value was considered
in a systematic formula, and the response surface method was utilized to analyze fatigue failure
probability. The proposed model was applied to complex fatigue phenomena such as spontaneous
crack nucleation, crack branching, and fatigue failure under biaxial cyclic loadings where fatigue
crack paths interact in complicated ways. The fatigue crack growth pattern, fatigue life, and
fatigue reliability of specimens considering the biaxial or uniaxial fatigue loadings were ana-
lyzed. The accuracy of the fatigue model was verified through a series of comparisons with the
experimental, analytical, and FEM results. The effectiveness of the proposed method was also
demonstrated in the application to the fatigue reliability analysis of the Ting Kau Bridge.

1. Introduction

With the widespread applications of steel bridges, the assessment of their residual fatigue lives has become an important issue
[1–3]. To obtain an accurate prediction of the residual fatigue life of steel bridges, various factors, e.g., vehicle overload, increasing
traffic volume and structural components with unknown fatigue property, need to be considered, which is essential for conducting
structural replacements [4–5]. One important issue in steel bridges is the crack development. Recently, a number of bridge accidents
occurred in different countries indicate that the cracks appearing at welded details can significantly reduce the fatigue life of steel
bridges [6–8]. The cracks are random in nature and thus pose a difficulty in the fatigue life prediction.

To date, plenty of researches on the fatigue life evaluation of reinforced concrete and steel bridges have been carried out [9–17].
For example, Bolzon and Corigliano [15] proposed a general mixed finite element method (FEM) to model the nucleation and spread
of discrete cracks. Stazi et al. [16] used enriched quadratic interpolations in their FEM formulation to resolve the singular stress field
at crack tips, which is able to treat linear elastic fracture mechanics problems without significant mesh refinement. However, there
remain some defects in these approaches. As pointed out by Shen et al. [17], discontinuous stress and strain formed at crack tips
should be dealt with by special singularity processing in FEM. Conventionally, external crack propagation criteria were introduced to
regulate the crack, but they may fail when dealing with complex crack paths. Recently, a cohesive zone model [18] was proposed for
the purpose of improving the conventional FEM, but it still requires a prior knowledge of the crack propagation path. Therefore, it is
acknowledged that the current FEM practice of fatigue life prediction of steel bridges suffers from discontinuous stress and strain
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fields which require special treatment of singularities and therefore cannot fully incorporate crack initiation and propagation. Be-
sides, fatigue failure is a dynamic process, meaning that remeshing is required in the simulation which makes the issue more difficult.

In order to overcome the shortcomings of traditional FEM, Silling [19] develop the PD theory which does not assume spatial
differentiability of displacement field and permits discontinuities to arise as part of solution. PD has been utilized successfully for
progressive cracking and failure prediction in various situations, e.g., impact issue [20], composite damage [21], metal corrosion
[22].The PD theory was first applied to the fatigue life evaluation by Silling and Askari [23]. Their model is capable of simulating the
three phases of fatigue failure, i.e., crack nucleation, fatigue growth and failure in a quasi-static crack growth sample. Silling and
Askari [23] also modeled the nucleation of a fatigue crack at a stress concentration and its growth along a curved trajectory in three
dimensions under quasi-static condition by using the dynamic relaxation method. They indicated that the PD theory is advantageous
in simulating spontaneous formation, interaction and growth of discontinuities in a consistent framework, and thus provides a way to
treat the fatigue crack nucleation and growth as part of a consistent mathematical description of the boundary value problem while
no additional criteria for crack growth process is needed. Oterkus et al. [24] developed a methodology to predict the fatigue failure of
materials, in which a PD parameter related to the crack growth, i.e., the critical bond stretch, is assumed to degrade exponentially
with the cyclic load progress. Jung and Seok [25] extended the PD fatigue model to a mixed-mode case, and the proposed model was
verified by experimental results to be able to predict the fatigue life of specimens under various load conditions with high accuracy.

In the present work, a new reliability method based on PD theory for predicting the fatigue crack behavior of steel bridges under
quasi-static condition is proposed. The new method incorporates the material failure intrinsically and can therefore avoid the need for
external crack growth criteria and post-processing. Moreover, a response surface method is utilized in the fatigue calculation of steel
bridges under vehicle loading to evaluate the inherent uncertainties in fatigue problems, as introduced in Section 2.3. The accuracy of
the proposed method is verified via comparing the simulation results with both the experimental and analytical results. In a case
study, the new method is applied to an actual steel bridge, in which a structural health evaluation system is established to evaluate
the fatigue failure probability of the thin-walled members and the fatigue performance of the bridge under actual vehicle loadings.

2. Peridynamic theory for fatigue failure

2.1. Brief review of two-dimensional (2D) bond-based PD model

The PD theory can be considered as an extension of molecular dynamics in continuum dynamics, which makes the property of a
continuum effectively treated from the perspective of submicroscopic. As schematically depicted in Fig. 1, in PD theory, a material
domain is discretized into a finite number of particles, which interact with each other by means of internal forces. The mass of
individual particles is calculated based on the equal share of mass between neighboring particles and their locations are determined
by integrating the equations of motion. The internal forces between particles are calculated by the empirical interaction function.
Particles move in accordance with Newton’s second law and take the form as

∫= − − +ρ t f t t dV tu x u x u x x x b x¨ ( , ) ( ( , ) ( , ), ) ( , )
H x

' '
' (1)

where ρ is the spatially dependent density; u is the displacement vector; f is the pairwise force function of the PD bond that connects
particles x and x′; b(x,t) is the body force; The integral range H represents the compact supported region of the pairwise force
function around particle x (see Fig. 1), and is called the “horizon region” or simply named as “horizon”. This horizon domain is a
spherical neighborhood of the central particle x, but excluding x, with its mathematical expression given as

= ∈ < − ≤R δH x x x{ 0 }' ' (2)

In the case of a micro-elastic material, the pairwise force function between particles x and x′ is defined as

Fig. 1. Pairwise interaction of a material particle x with its neighboring particle x′.
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where η(=u′-u) and ξ(=x′-x) represent the relative position in the configuration and the relative displacement between x and x′,
respectively. Note that the direction of f is parallel to the relative position vector at the deformed state (η + ξ). The micromodulus
function c(ξ) is determined by equating the PD internal energy of a body with the strain energy density derived from the classical
elasticity theory under the same deformation. There are two types of micromodulus function c(ξ) in 1D plane-stress condition, i.e., the
constant one and the conical one [26]. The same procedure has also been employed to calculate c(ξ) in 2D condition [27]. The
following equations, both of which are obtained under plane-stress conditions, are for the conical micromodulus function and
constant micromudulus function in 2D, respectively.
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where E is Young’s modulus and ν is Poisson's ratio. Note that ξ=||ξ||, η=||η||, and s in Eq. (3) is the bond’s relative stretch which is
defined in terms of relative position ξ and relative displacement η as

=
+ −ξ η ξ

ξ
s

(6)

When the relative elongation of a bond exceeds a critical value s0, breakage occurs between a pair of particles and as a con-
sequence, the two particles will no longer interact and cause material damage. The internal force on this bond is simply replaced by
zero.
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The critical relative elongation s0 is computed based on the fracture energy of material. In 2D, the fracture energy G0 is defined as
the energy per unit fracture length for completely separating a body in two halves. Equating G0 with the fracture energy derived from
the PD theory, we have
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Substituting the micromodulus function derived from Eqs. (4) and (5) into Eq. (8), s0 is obtained as:

=s πG
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for the conical micromodulus function and

=s πG
Eδ
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90

0

(10)

for the constant micromodulus function.

2.2. PD fatigue model

For elastic-brittle materials, the PD constitutive equation of motion, as shown in Eq. (1), can be rewritten as

= ⎧
⎨⎩

≤ > ≤ ≤η ξ η ξ ξf φ t f φ t s t s φ t t( , , , ) ( , , , ) if ( , ) and 0 for 0
0 otherwise

'
0
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(11)

where φ is adopted to represent the remaining fatigue life of a given bond. φ is set to 1 when the bond is intact, and will decrease
monotonically to 0 with the increase of cycling numbers N. Fatigue fracture will happen when the bond has no remaining fatigue life,
φ(N) = 0.

Comparing with Paris law, the relationship between fatigue life decay rate and strain amplitude can be expressed in Eq. (12).

⎧
⎨
⎩

= − = − +

=

N γ ε ε nε c ε

φ

( ) ( ) ( )

(0) 1

dφ
dN

m m1 1

(12)

Here, ε=|s+-s−| is the current cyclic bond strain, γ (ε) is a positive parameter determined by the bond strain ε, while m1 is a positive
constant exponent. Note that the effect of mean stress/strain effect was not obvious in simple fatigue example, while the mean
probability density function model was very difficult to be obtained in a complex engineering problem. Therefore, only the amplitude
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effect is considered and the effect of mean stress/strain is ignored. The bond break immediately when the fatigue life φ is less than or
equal to 0, and the broken bond will no longer interact with others. Note that the cycle number N is recommended to be treated as a
real number instead of an integer [23].

In the fatigue crack nucleation phase, γ (ε) and m1can be assumed as

= + = −γ ε n ε c m M( ) , 11 1 1 1 1 (13)

where n1, c1 and M1 are positive constants independent of nodes position and cyclic number, and are determined by the real material
properties from experiments. In order to compute the critical cycle number N1 exceeding which the bond will break, Eq. (12) is
integrated over N.

+ =−n ε c ε N( ) · 1M
1 1 1 1

1
1

1 (14)

In Eq. (14), the bond strain ε1 is assumed independent of N. Two key values, i.e., ε0 and εmin, found in the S-N curve as plotted in
Fig. 2 (a) denote the critical bond stain and the threshold bond strain respectively. In log–log as shown in Fig. 2(b), the slope k=−1/
M1. When the bond strain ε1 is set as ε0 and εmin, Eq. (14) can be rewritten as
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from which n1 and c1 can be obtained.
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For some materials, no fatigue damage will occur when the fatigue strain is less than a certain threshold (εmin in S-N curve).
However, in some cases, any minor strain should not be ignored in fatigue accumulation, which means that the threshold value
εmin = 0 and Eq. (14) can be rewritten as

⎧
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n ε
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k
1 0

1

1 (17)

A special case of Eq. (14) can be obtained when substituting n1 and c1back into Eq. (14), which is the same as the critical fatigue
life equation given in [23] and [28]. Although Silling and Askari [23] also considered the influence of threshold value εmin, but the
threshold value is not directly reflected in the systematic formula. We explain the derivation process here in detail, and give a general
solution of PD fatigue model.

When the fatigue cycle number N > N1 = 1/(n1ε1 + c1)εm1, the crack nucleates. During the nucleation phase, when at least one
bond breaks, quasi-static analysis should be performed immediately and a new stress field is calculated in the same cycle. If non-
fatigue fracture occurs, the quasi-static calculation should be repeated in the cycle until the non-fatigue fracture no longer occur.
Then the next fatigue cycle is started, and it is ended with occurrence of a new fatigue fracture on the bond with strain ε ≥ ε1. The
quasi-static analysis method is again utilized to calculate the stress field in the new cycle. The stress relaxation method [29] is used
here for the quasi-static analysis.

Note that a given material particle x will remain in nucleation phase until there is another x′ in horizon with a damage index ϕ
(x′) ≥ 0.5 [30]. After particle x changes into growth phase, the parameters in Eq. (12) can be calculated by comparing with the Paris
parameters C andM2, which can be experimentally obtained [31]. With a discretization of the cycle numbers the fatigue equation Eq.
(12) in growth phase can be rewritten as

Fig. 2. Loading cycles N as a function of bond strain ε.
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The backward finite difference discretization method is adopted here, where εnx,x′ is cyclic strain of the bond between particles x
and x′. When the initial fatigue life φ0

x,x′ of this bond is given, the fatigue life at any time step φn
x,x′ can be iteratively calculated after

the parameters n2, c2 and m2 are computed.
Induced by stress concentration, fatigue crack nucleates and grows into a macroscale crack. The crack growth rate can be de-

termined by the Paris law, equating it to the work done in PD method, we have
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Because the stress intensity factor (SIF) is proportional to bond strain, cyclic change in SIF is proportional to bond strain am-
plitude, and thus we can set m2 + 1 = M2 here. Comparing the crack growth rate obtained by experiments with the PD results using
any three pairs of arbitrary values nˊ1,2,3, cˊ1,2,3 and the already calibrated m2, variables n2, c2 can be determined.
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2.3. Reliability PD model for fatigue

Predicting the remaining fatigue life of structures under complex fatigue loading is a challenging task since the time to failure
depends on a multitude of variables, many of which are stochastic in nature. The safety of a structure can never be completely
guaranteed, if we only utilize deterministic methods. Therefore, it is necessary to carry out the fatigue study from the perspective of
reliability, whereby the remaining life is calculated for a certain probability of failure and a given confidence interval.

Combining response surface method with PD fatigue method, a fatigue reliability PD (FRPD) model is proposed. The flow chart of
the method is shown in Fig. 3, the specific steps of FRPD method are as follows:

(1) Approximate the reliability function as a quadratic polynomial with no cross terms.

∑ ∑⋯ = + +
= =

G X X X a b X c X¯ ( , , , )n
i

n

i i
i

n

i i1 2
1 1

2

(21)

where a, bi, ci (i = 1,2, …, n) are undetermined coefficients. A total of (2n + 1) undetermined coefficients are involved;

(2) Take the initial point P(k) = P(1)=(x(1)1 ,x(1)2 ,…,x(1)n +1) as the center point, where k is the iteration number;
(3) Fit the expression of G (X1, X2,…, Xn), select (2n + 1) points xk(1), xk(2), …, xk(n + 1), and 2n points xk(1), xk(2), …, xk(i) ± fσi,…,

xk(n + 1) (i = 1,2, …,n), where σi is the standard deviation of the variable Xi. Coefficient f adopts 2 or 3 at the 1st iteration, adopts
1 in other iterations. By using the PD fatigue life prediction method, these (2n + 1) checkpoints can be calculated from the
fatigue numerical test;

(4) The undetermined coefficients ai, bi, ci (i = 1, 2, …, n) can then be obtained from the (2n + 1) checkpoints adopted in step (3),
the approximate reliability function G in this step can be calculated;

(5) Apply the JC method [32] to compute the checkpoint P*(k) and the reliability index β(k) in the approximate reliability function G ;
(6) Judge whether the convergence condition |βk-βk−1|/βk < ε0 is satisfied (ε0 is the convergence precision). Stop the iteration

immediately when the condition is satisfied, both the new design checkpoint P*and the new reliability index β = β(k) can then be
obtained. Otherwise, the interpolation method is used to obtain interpolation points.

= + −
−

∗
∗P P P P G P

G P G P
( ) ( )
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k k k k

k

k k
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( )
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Compare P(k)M and P*(k), select the point closer to the limit state surface as the new center point, and return to step (3) for the next
iteration until the convergence condition is satisfied.

3. Numerical simulation and analysis

In this section, numerical simulations of fatigue crack growth are performed using the proposed PD method. The results obtained
by fatigue tests, analytical methods and FEM are given for comparison. The simulations are implemented in a Fortran code, and
Tecplot is utilized to visualize the results. Four cases are simulated with the first one using aluminum alloy AA2024-T351 [33] and
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the next two using aluminum alloy 7075-T651 [31]. At the end of this section, the proposed method is used to calculate the fatigue
failure probability of thin-walled members of the Ting Kau Bridge under actual vehicle loads. Note that since the lengths of all the
specimens are much larger than the notch size, the square plate problem can be approximated as a central I-type crack infinite plate
problem [34].

3.1. Verification of fatigue crack path accuracy

The expected crack path of aluminum alloy AA2024-T351 under biaxial fatigue loadings are first studied. The geometric con-
figuration and loading condition are given in Fig. 4. The same problem was previously investigated in Breitbarth and Besel [33]
where the experimental and FEM results are available. The present results obtained by using the PD method are compared to the
results from Breitbarth and Besel [33].

A biaxiality ratio λ is utilized to characterize the biaxial stress condition in Eq. (23).

=λ σ
σ

x

y (23)

where σx and σy represent the stress parallel and perpendicular to the initial notch, respectively. The properties of the material are
presented in Table 1. The specimens are tested at the frequency of 5 Hz with loading ratio λ = 3, σy = 40 MPa and the phase
difference Δφ = 0. The initial notch is aligned in the x direction with a length of 80 mm. A small deviation is pre-set at both ends of
the initial notch with an orientation of 45° and a center symmetric of 1.5 mm. The crack pattern will be completely axisymmetric
(more precisely, a horizontal line) when the geometric dimensions and loadings are both axisymmetric, because a horizontal central
crack can only develop along the horizontal direction under the condition of x-axis symmetry. This representative defect size is very

Fig. 3. Flow chart for FRPD analysis.
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consistent with the selected 0.1 μs step size and the mesh size used in the study. Generally, very small geometric perturbations are
also likely for true crack paths due to microscopic inhomogeneities or defects that exist along the path of the crack [35]. Note that all
of the quasi-static simulations are conducted using the adaptive dynamic relaxation method.

Firstly, convergence study is conducted with attempt to determine whether the size of the nonlocal region is sufficiently small to
obtain a crack path that no longer changes when the horizon size decreases further. In the PD model, the two numerical convergence
standards are m-convergence and δ-convergence. In this subsection, δ-convergence is achieved through crack paths. We perform the
test for m = δ/Δx = 4 and use the following values for the horizon size: 8, 4, and 2 mm. Each horizon size determines the grid
spacing used with it because m is fixed; therefore, the corresponding Δx values are 2, 1, and 0.5 mm, respectively. The crack path for
the three cases are shown in Fig. 5. It is found that as the horizon decreases, the fatigue crack path does not substantially change but
becomes more defined, which is consistent with the assertion that the spread of damage is related to the horizon size. The grid
spacing value Δx = 0.5 mm provides a good balance between accuracy and efficiency, and thus the same Δx is utilized for the rest
computations in this study.

The fatigue crack patterns of the present simulations and experiments in [33] are compared in Fig. 6. Fig. 6(a) exemplarily shows
the gauge area of AA2024-T351 specimen with the kinked crack after the fatigue test. Fig. 6(b) gives the equivalent crack path
obtained by the PD method. It can be seen from figure that there is a higher damage index near the crack path (blue to red). The slope
of two stable crack paths are both 85 degree which are affected by biaxiality ratio (λ = 3). Due to the artificial small deviation, the
stress concentrated at the left side of the crack tip, which leads to a higher failure rate on the left side of the fatigue crack than on the
right side, thus forming a slight “s” shape but still has good consistency with the experimental results. Changing the biaxiality ratio
has a significant effect on the fatigue crack extension angle. More biaxial fatigue cases are simulated to investigate the fatigue crack
growth behavior in detail, and the results simulated by PD method and FEM [33] are compared in Fig. 7. It is observed from Fig. 7
that the resultant crack path obtained by the two different methods are very close under different biaxial fatigue loadings. The cracks
grow in a stable pattern, under a biaxiality ratio of λ = 1 the crack grows almost straight with slope angle less than 1 degree. When
λ= 1.5, the PD simulation predicts an angle of about 45° for the stable crack propagation direction, which is in fairly good agreement
with the FEM results. With the increase of λ and a same value of vertical fatigue loading, the slope increases to 75 degree (λ = 2.5)
and 85 degree (λ = 3). In spite of the limitation of the database, the consistency of the research results distinctly proves that with
different biaxiality ratios, the crack paths in AA2024-T351 aluminum alloys can be sufficiently predicted with the proposed method.

The effect of initial notch angle on the fatigue performance is further analyzed. Fig. 8 shows the crack paths of numerical samples
with different initial notch angles (θ= 0°, 30°, 60°and 90°) and biaxiality ratios (λ = 1.2, 1.56, 2.5, 3). Although the cycle number in
Fig. 8 looks impractically huge, all the simulations have the same cycles when stress redistribution does not occur, which can greatly
reduce the simulation time. The accuracy of the proposed method has been verified by comparing the PD results with the experiment
from Breitbarth and Besel [33]. Moreover, since this example focused on the effect of initial notch angle and biaxiality ratio λ, there is
no need to verify this example by experiment again. It’s obvious in Fig. 8 that, with a fixed angle the crack is more likely to propagate
in the horizontal direction when λ increases, and crack inclination angle increases simultaneously. When crack inclination angle is
less than 45°, the fatigue life of the specimen under high λ is longer than that under low λ, and the opposite phenomena occur when

Fig. 4. Geometric configuration and loading condition.

Table 1
Material parameters [33].

Parameters E/(GPa) ρ/(kg/m3) a0/(mm) C M

71 2,850 40 10−29 3
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Fig. 5. δ-Convergence in terms of fatigue crack path computed with different grid spacing.

Fig. 6. (a) AA2024-T351 specimen after test with initial notch; (b) PD analysis showing equivalent damage pattern after failure.
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Fig. 7. Simulated crack paths of biaxial tests: (a) FEM results; (b) PD results.

Fig. 8. Rules of single crack propagation, curving and branching in the numerical specimens subjected to biaxial fatigue loading.
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the initial angle is greater than 45°, which are consistent with Duan et al.’s conclusion [36].

3.2. Verification of fatigue life accuracy

In this case, a central-crack thin rectangular plate of dimensions 640 mm × 640 mm (see Fig. 9), which is subjected to acyclic
loading with constant amplitude Δσ = 100 MPa, the stress ratio R = Δσmin/Δσmax = 0, is considered. The initial notch is pre-set at
the center of the specimen in the horizon direction, α= 0°. The accuracy of the proposed method for solving fatigue life is verified by
comparing the PD results with the analytical solutions. The material parameters of the specimen are given in Table 2. Based on the
proposed expressions, the PD parameters n1, c1, m1 and n2, c2, m2 are calculated, as summarized in Table 3. Half of the initial notch is
taken as a0 = 10 mm, refer to Zhao and Jiang’s work [31] for more details about the experiment. Note that the static analysis is the
basis of PD fatigue simulation and the most time-consuming part. A multi-grid method [37] is adopted to improve the calculation
efficiency.

(1) Analytical solution

Analytical fatigue life is calculated to verify the accuracy of the proposed PD method. The specimen size has been described in
detail as shown in Fig. 9. The resulting SIF amplitude around the initial crack tip is

=
−

= ×
−

=K J E
ν

m mΔ Δ ·
(1 )

4082 Pa· 70 GPa
1 0.09

17.72 MPa2 (24)

Here, J represents the J-integral as a path-independent integral in elastoplastic fracture mechanics which is used to describe the stress
situation of a crack tip region. The selection of J-integral range was based on the crack size, that is, a 5 mm × 5 mm square was
selected and the crack tip was kept at the center. Refer to the research of Hu et al. [29] for more details. The Poisson's ratio of
aluminum alloy ν is approximately 0.3 according to Zhao and Jiang’s work [31]. The SIF amplitude ΔK greater than 1 MPa·m1/2 at the
initial crack tip indicates that the fatigue crack will propagate.

The critical crack size ac is calculated by fracture mechanics as

⎜ ⎟= ⎛
⎝

⎞
⎠

=a
π

K
σ

1 79.56 mmc
Ic

max

2

(25)

Fig. 9. A square plate with a center crack subjected cyclic tensile loading.

Table 2
Material parameters [31].

Parameters E/(GPa) ρ/(kg/m3) a0/(mm) KIc(MPa∙m1/2) C M1 M2

70 2,850 10 50 10−29 3.4 3
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Here, KIc represents the critical SIF. The value of KIc and the parameters in Paris’ law can be found in Table 2. By using the Paris’ law,
the fatigue life can be calculated as

∫ ⎜ ⎟= =
−

⎛
⎝

− ⎞
⎠

= ×− −N da
C K C M σ π a a(Δ )

1
( 2 1)(Δ )

1 1 2.9 10 cycle
a

a

M M M
c
M

2 0
2 1 2 1

4c

0 2 2 2 2 (26)

(2) PD fatigue method

The fatigue life is calculated by using the proposed PD fatigue method. The same material parameters as the analytical method are
used, while the iterative time step dt is taken as 10−7s.

The critical crack size ac (the crack length when non-fatigue damage occurs) calculated by the PD fatigue method is 83 mm, as
shown in Fig. 10. The PD calculation results and the analytical solutions are compared in Table 4. It is found that the fatigue life Np

obtained by the two methods are quite consistent, while the critical crack size ac shows a certain deviation. In fact, the deviation
increases with the crack growth, as shown in Fig. 11. The inevitable deviation is produced by the infinite plane simplification.
However, when the crack propagates into the final stage along with the crack length close to the critical size, the corresponding
number of alternating load cycles contributes little to the fatigue life. Thus, the critical crack size predicted by the PD method is
reasonably acceptable.

3.3. Verification of fatigue reliability accuracy

A specimen subjected to cyclic tensile loadings, as shown in Fig. 12, is analyzed to verify the accuracy of the proposed FRPD
method. The random parameters and their distribution functions given in Table 5 were selected based on the statistical characteristics
of these data: (1) Fracture toughness KIc: suggested by Wallin K [38], KIc follows a normal distribution, the range of average value is
44–220 MPa·m1/2, and the coefficient of variation should be within the range of 0.15–0.25; (2) Crack length a: as suggested in
Bullough et al. [39] the crack size follows a log-normal distribution, and it was recommended that the coefficient of variation ranges
from 0.1 to 0.5; (3) External load σ: Riahi et al.’s [40] research suggested that σ follows a log-normal distribution and the coefficient
of variation ranges from 0.1 to 0.3; (4) Other random parameters: Liu [41] suggested that when there is a lack of statistical data, it
can be conservatively assumed that the parameters follow a normal distribution, and their means and coefficients of variation can be
determined based on experience. Note that in this case, two identical symmetric circular holes (h = 20 mm, R = 10 mm) are pre-set
according to Newman's paper [42], for the purpose of calculating the SIF with the stress shielding effect included. In fracture
mechanics, the dimensionless SIF of the I-type crack is given as

=F K
σ πaI

I

(27)

In PD method, the SIF is derived by calculating J-integration. Interested readers are referred to Panchadhara and Gordon [43] for
specific details.

Table 3
Parameters used in the PD model.

Parameters n1 c1 n2 c2 m1 m2

2,100 4.2 1,800 3.6 2.4 2

Fig. 10. Three phases of fatigue fracture: (a) Phase I: the fatigue crack initiation phase; (b) Phase II: the fatigue crack growth phase; (c) Phase III: the
fatigue failure phase.
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Table 4
Comparison of results between the two methods.

Methods ac/(mm) NP/(cycle)

PD 83 2.92 × 104

Analytical solution 79.56 2.9 × 104

Fig. 11. Number of cycles versus the crack size.

Fig. 12. Square specimen with initial notch between two holes.

Table 5
The statistical characteristics of random variables.

Random Variables Means Coefficient of Variation Distribution Type

KIc 50 MPa∙m1/2 0.2 Normal distribution
ν 0.3 0.05 Normal distribution
a 10 mm 0.2 Lognormal distribution
σ 200 MPa 0.1 Lognormal distribution
C 10−29 0.2 Lognormal distribution
M1 3.4 0 Constant
M2 3 3 Constant
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Accurately calculating FI (not a necessary part in PD calculation) is one of the indicators to assess the reliability of the proposed
method. In PD theory, fatigue cracks extend spontaneously without additional fracture criteria, so the calculations under different
fracture modes have no difference. Therefore, only the fatigue reliability accuracy of the model under mode I condition was vali-
dated. The FI values obtained by the PD solution were compared with Newman’s results in Fig. 13. It is seen from Fig. 13 that the
present results are quite consistent with Newman’s results. In addition, FI increases significantly with the growth of a/R; When a/R is
greater than 3.0, the value of FI is infinitely approaching to the dash line, which represents the SIF calculated with no holes. It
illustrates that when the crack size is more than 3 times of the circular hole diameter, the shielding effect on the crack tip can be
neglected.

The FRPD method proposed in this paper is utilized to analyze the fracture reliability of a pre-notched square plate with no holes
and is also compared with the direct Monte Carlo method. In the reliability function Eq. (21), the random variables include material
fracture toughness KIc, Poisson's ratioν, crack size a, tensile stress σ and Paris parameters C, M2. These parameters are independent of
each other and their statistical characteristics are summarized in Table 5. The calculation results in each iterative step are listed in
Table 6, where the convergence accuracy is set as ε=|βk-βk-1|=0.001.

It is seen from Table 6 that the FRPD method only needs a small number of iterations to obtain a convergent result. The cal-
culation results of the proposed method are in good agreement with the direct Monte Carlo results (PMCf =0.06%, the relative error is
about 2.8%). In terms of computational time, the proposed PD method only needs 33 times of numerical calculations (7.37 × 104 s,
about 1/21 of direct Monte Carlo method), which is a great calculation efficiency improvement when performing fatigue reliability
calculations.

Finally, the influence of stress magnitude on the fatigue failure probability is discussed. The PD results and the analytical solutions
as the mean cyclic tensile stress E(σ) increases from 100 MPa to 300 MPa are compared in Fig. 14. It is not hard to find that the
reliability index β decreases with the increasing E(σ). When the tensile stress E(σ) increases gradually, the failure probabilities
obtained by the FRPD method are in good agreement with the analytical solutions. However, the FRPD results have some errors with
the analytical solution, but the errors are acceptable because the analytical solution is based on infinite assumptions while the
specimen calculated by the FRPD method has to be finite.

3.4. Fatigue reliability of Ting Kau bridge

In the fourth case, the Ting Kau Bridge is taken as an example to apply the FRPD method in order to evaluate the fatigue
performance of the bridge under actual vehicle loads and also to calculate the fatigue reliability index of thin-walled members in the
bridge.

Fig. 13. Values of FI corresponding to different crack sizes.

Table 6
Iterations for Case with no holes.

Random Variables Checkpoints

First Iteration β (1) = 2.067 Second Iteration β (2) = 2.071 Third Iteration β (3) = 2.00709

KIc 34.72 MPa∙m1/2 34.91 MPa∙m1/2 34.8 MPa∙m1/2

ν 0.3 0.3 0.3
a 0.98 mm 1.14 mm 1.106 mm
σ 199 MPa 214.37 MPa 219.18 MPa
C 0.96 × 10−29 1.1 × 10−29 1.1 × 10−29

m1 2.4 2.4 2.4
m2 2 2 2
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The three-dimensional FE model of the entire Ting Kau Bridge was established using the finite element software ANSYS. The
model contains a total of 12,688 nodes and 72,968 elements, including 14,929 beam elements, 25,720 shell elements, 26,042 solid
elements, and 6227 contact elements. According to the natural frequencies and modal shapes obtained by the health monitoring
system installed on the bridge, the FE model was modified to make it more in line with the actual situation. For detailed information
about the three-dimensional finite element model of Ting Kau Bridge, please refer to the related special report [44].

According to the measured traffic information, the fatigue stress spectrum of the steel stringer and steel girder can be established.
The traffic information of the Ting Kau Bridge is collected and recorded by the weigh-in-motion (WIM) system installed at the Tsing
Yi shore abutment. It mainly includes information of the vehicles’ number and weight, which passing through various lanes of the
bridge, refer to the research report of Ting Kau Bridge [44] for specific details. It is seen from the schematic diagram of the Ting Kau
Bridge shown in Fig. 15 that key fatigue members can be selected from the steel stringers on the axes 1000, 2000, 3000, 4000 and the
steel girders on the east and west side of bridges [45]. Since the WIM system is not installed on the shoulder and only a very small
number of vehicles are considered to occupy the shoulder, the fatigue damage caused by the vehicle on the shoulder can be ignored.

The special vehicle load spectrum is further converted into standard fatigue vehicle (SFV) load spectrum [46] as shown in Table 7.
The stress-affected line shape of the steel stringer and the steel girder of the Ting Kau Bridge deck have basically only one distinct
peak, it can be approximated that the entire stress history contains only one stress cycle. Since the vehicle wheelbase is much smaller
than the bridge span, this simplification of the fatigue load spectrum is acceptable. Then, the maximum and minimum stresses of the
components caused by an i-group vehicle passing through the jth lane can be calculated by using conversion factor kw,i as

=
=

⎫
⎬⎭

= ⋯ = ⋯
σ k σ
σ k σ

i n j n( 1, 2, , ; 1, 2, , )ji i j

ji i j

RV,max, w, SFV,max,

RV,min, w, SFV,min,
T L

(28)

where nT is the total number of vehicle groups; nL is the total number of traffic lanes. Since the stress caused by the dead load is
usually very large, the influence of the dead load should also be considered in the stress amplitude calculation. Therefore, rewrite Eq.
(28) as

= +
= +

⎫
⎬⎭

= ⋯ = ⋯
σ k σ σ
σ k σ σ

i n j n( 1, 2, , ; 1, 2, , )ji i j DL

ji i j DL

RV,max, w, SFV,max,

RV,min, w, SFV,min,
T L

(29)

Fig. 14. Reliability index change with different stress magnitude mean value E(σ).

Fig. 15. Plan and elevation of the Ting Kau Bridge [44].
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where σDL is the stress of the key component under dead load. In addition, the influence of the compressive stress should be ignored
when calculating the stress amplitude, because the compressive stress cannot cause crack propagation in the steel structures [47].
Therefore, the key component stress amplitude caused by an ith group vehicle passing through the jth lane can be expressed in Eq.
(30).

=
⎧

⎨
⎩

− ⩾
<
<

= ⋯ = ⋯σ
σ σ σ
σ σ

σ
i n j nΔ

0
0

0 0
( 1, 2, , ; 1, 2, , )RV ji

RV max ji RV min ji RV min ji

RV max ji RV min ji

RV max ji

T L,

, , , , , ,

, , , ,

, , (30)

In Eq. (30), ΔσRV,ji = 0 means that the key component is under pressure and fatigue damage will not occur. Taking an SFV
crossing the mid lane as an example, the stress history of the lower flange is plotted in Fig. 16. As shown in Fig. 16, since only one
stress cycle is caused both in the steel stringers and the steel girders when each vehicle passes through the bridge, the cycle number of
the stress is the same as the number of vehicles in the ith group, jth lane.

By comparing the maximum stress amplitude of the components caused by SFV (considering the dead load effect) [45], the key
fatigue components of the Ting Kau Bridge can be determined and are summarized in Table 8. The detailed fatigue performance of
the steel stringer and steel girders can then be analyzed by establishing a PD fatigue model. Since only the tensile stress can promote
crack propagation, it is assumed that the initial notch appears on the lower flanges. Both central cracks and side cracks will be
considered for steel stringers, while only the side cracks need to be considered for steel girders [48]. Note that all the cracks are
considered to be penetrable.

The steel stringers and steel girders are thin-walled members, and the lower flange mainly bears the tensile stress inside the plate.
In addition, considering that the initial notch is generally very small, and that the crack tends to expand in a direction perpendicular
to the applied tensile load, the influence of the initial notch angle on the crack propagation can be ignored. Therefore, the crack
propagation in steel stringers can be simplified as central I-type crack problem and unilateral I-type crack problem, while the crack
propagation in steel girder can be simplified only as unilateral I-type crack problem, as shown in Fig. 17.

For the fatigue reliability analysis of the Ting Kau Bridge, consider these random variables: initial notch length a0, material
fracture toughness KIc, parameters in PD model n, c, m, SIF threshold ΔKth, multi-vehicle effect coefficient KF, critical fatigue damage
Dc, and the number of load spectrum vehicles nij (total nL × nT). Referring to [49], the fatigue life L of steel stringers and steel girders
can be expressed as

Table 7
Annual SFV spectrum of the Ting Kau Bridge (2007) [44].

Number Ratio to SFV (kw) Number of vehicles heading to Ting Kau (Westbound) Number of vehicles heading to Tsing Yi (Eastbound)

Slow lane Mid Lane Fast lane Slow lane Mid Lane Fast Lane

1 0.094 2,032,838 4,689,433 3,059,542 3,412,120 4,100,825 2,457,824
2 0.313 1,411,792 1,229,028 154,470 130,751 945,198 671,598
3 0.688 1,133,915 577,046 3385 985 385,923 1,355,270
4 1.063 262,855 79,024 975 157 61,135 346,937
5 1.438 78,618 12,866 207 32 20,347 124,463
6 1.813 23,313 502 46 2 2,460 42,313
7 2.188 3,774 5 2 0 325 6,663
8 2.438 571 0 1 0 391 1,599
Sum 4,947,676 6,587,904 3,218,628 3,544,047 5,516,604 5,006,667

Fig. 16. Stress history of the steel cross girder lower flange due to SFV passing through Mid lane.
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where

Table 8
Stress ranges of the critical components for fatigue failure [45].

Component type Component number Maximum stress amplitude (MPa) Component location

Steel Stringer E33950 17.77 Axis 1000, 303.3 m from the starting point
E34506 17.16 Axis 1000, 847.3 m from the starting point
E33953 11.77 Axis 2000, 303.3 m from the starting point
E34521 12.19 Axis 2000, 857.8 m from the starting point
E35156 11.55 Axis 3000, 303.3 m from the starting point
E35725 11.99 Axis 3000, 857.8 m from the starting point
E35159 17.46 Axis 4000, 303.3 m from the starting point
E35728 17.11 Axis 4000, 857.8 m from the starting point

Steel Girder E29983 14.42 west side of the bridge, 857.8 m from the starting point
E30256 14.44 west side of the bridge, 1033.3 m from the starting point
E33090 15.16 west side of the bridge, 857.8 m from the starting point
E33402 14.81 west side of the bridge, 1033.3 m from the starting point

Fig. 17. Simplified model for PD fatigue analysis.

Table 9
The statistical characteristics of random variables [49].

Random variables Mean Coefficient of variation Distribution type

a0 10 mm 0.2 Lognormal
KIc 51 MPa∙m1/2 0.2 Normal
C 6.94 × 10−11m/cycle/(MPa × m1/2)m 0.2 Lognormal
ΔKth 5.38 MPa∙m1/2 0.2 Normal
KF 1.5 0.2 Normal
Dc 1.0 0.3 Lognormal
nji Refer to [49] 0.1 Normal
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where NRV,ji(a0,KIc,c1,n1,m1,c2,n2,m2) represents the fatigue life of the key components which can be calculated by the PD fatigue
method, and the mean value and standard deviation of the fatigue life can be calculated by using the reliability method introduced in
Section 2.3. Firstly, the fatigue life L is fitted into a response surface function. Then the variables are randomly sampled as listed in
Table 9. Finally, the relationship between the reliability index β of all key components and the bridge design fatigue life Ld are
determined respectively, as shown in Fig. 18 (1)–(12).

It is seen from Fig. 18 that for the same design fatigue life, the reliability index of the steel stringers under the condition of
unilateral crack is significantly lower than those under the condition of the central crack, indicating that the unilateral crack is more
prone to fatigue damage. For fatigue performance evaluation, the higher the target reliability index, the shorter the safe service life of
the structure, and the higher the testing and maintenance costs required. In order to strike a balance between safety and economy,
many scholars have studied the fatigue reliability index of steel bridges. The European Steel Structure Association recommends a
target fatigue reliability index of 3.5 for all steel bridges. Therefore, in this case when the target reliability index β = 3.5, the design
fatigue life of all key components is obtained from Fig. 18, which are summarized in Table 10.

Fig. 18. Reliability index β with different design fatigue life Ld of: (1)–(8) Steel stringers; (9)–(12) Steel girders.
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4. Conclusions and future work

In the present study, a fatigue reliability model based on the PD theory was proposed aiming at capturing the fatigue crack growth
and predicting the fatigue life of steel bridge components under repeated vehicle loading. The accuracy of the proposed fatigue model
was verified by comparing the predicted results with both experimental and FEM simulation results. An example with three fatigue
phases in modeling the fatigue cracking in a pre-notched steel plate under cyclic loadings was adopted for the purpose of illustration.
It is found that the model can effectively simulate the whole process of fatigue damage evolution and the fracture process of the steel
specimen. Based on the results from this study, the following conclusions can be drawn:

(1) The proposed PD fatigue method can effectively reproduce the fatigue crack growth patterns observed in experiments and is
therefore able to offer convergent numerical simulations. For biaxial fatigue specimens with different biaxiality ratio λ, the crack
patterns in aluminum alloy was well simulated by the proposed method. The crack patterns with different biaxiality ratios
predicted by the proposed method were very consistent with the experimental and FEM results. Moreover, the fatigue life of the
specimen obtained by the proposed method was very close to the analytical results.

(2) One main advantage of the proposed method lies in the significant reduction of computational time while retaining high ac-
curacy. Due to the adoption of the response surface method and multi-grid method, the computation time of the FRPD method
proposed in this study is approximately 1/21 of the time using the traditional Monte Carlo method. The proposed FRPD method
was applied to evaluate the fatigue failure probability of central I-type crack square plates, through which the accuracy and
efficiency of the proposed method were verified against analytical results. The influence of the shielding effect on the SIF was also
well captured in the simulation.

(3) The fatigue performance of the Ting Kau Bridge was evaluated using the proposed method. It was found that all the steel stringers

Fig. 18. (continued)

Table 10
Design fatigue life under target reliability index β = 3.5.

Component type Component number Fatigue design life Ld (year)

Central Crack Side Crack

Steel Stringer E33950 203 65
E34506 153 49
E33953 1200 460
E34521 734 241
E35156 1033 325
E35725 580 175
E35159 146 68
E35728 130 62

Steel Girder E29983 — 68
E30256 — 68
E33090 — 90
E33402 — 187
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with central cracks can meet the requirement of a design life of 120 years with a target reliability index β= 3.5. While in the case
of a single-sided crack, only half of the steel stringers and one steel girder can satisfy the requirement. The example illustrates that
the proposed method has good potential for the fatigue analysis of steel bridges.

Future research will focus on the further verification of this method through applications to other types of bridges.
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